
Fuzzing Guided by Bayesian Program Analysis
YIFAN ZHANG, Peking University, China
XIN ZHANG∗, Peking University, China

We propose a novel approach that leverages Bayesian program analysis to guide large-scale target-guided
greybox fuzzing (LTGF). LTGF prioritizes program locations (targets) that are likely to contain bugs and
applies directed mutation towards high-priority targets. However, existing LTGF approaches su!er from
coarse and heuristic target prioritization strategies, and lack a systematic design to fully exploit feedback
from the fuzzing process. We systematically de"ne this prioritization process as the reachable fuzzing targets
problem. Bayesian program analysis attaches probabilities to analysis rules and transforms the analysis results
into a Bayesian model. By rede"ning the semantics of Bayesian program analysis, we enable the prediction of
whether each target is reachable by the fuzzer, and dynamically adjust the predictions based on fuzzer feedback.
On the one hand, Bayesian program analysis builds Bayesian models based on program semantics, enabling
systematic and "ne-grained prioritization. On the other hand, Bayesian program analysis systematically learns
feedback from the fuzzing process, making its guidance adaptive. Moreover, this combination extends the
application of Bayesian program analysis from alarm ranking to fully automated bug discovery. We implement
our approach and evaluate it against several state-of-the-art fuzzers. On a suite of real-world programs, our
approach discovers 3.25→ to 13→ more unique bugs compared to baselines. In addition, our approach identi"es
39 previously unknown bugs in well-tested programs, 30 of which have been assigned CVEs.

CCS Concepts: • Security and privacy↑ Software security engineering.

Additional Key Words and Phrases: Greybox Fuzzing, Target Prioritization, Static Analysis, Bayesian Network

ACM Reference Format:
Yifan Zhang and Xin Zhang. 2026. Fuzzing Guided by Bayesian Program Analysis. Proc. ACM Program. Lang.
10, POPL, Article 17 (January 2026), 31 pages. https://doi.org/10.1145/3776659

1 Introduction
Large-scale target-guided greybox fuzzing (LTGF) [5, 33, 49, 50] is one of the most e!ective methods
in recent years for discovering unknown bugs in programs. LTGF uses multiple locations in
a program as a target set (usually derived from static analysis results and sanitizers [38]) and
continuously performs target prioritization during the fuzzing process. For high-priority targets,
LTGF leverages techniques from directed greybox fuzzing (DGF) [2] to mutate the seeds that are
more likely to trigger bugs at these targets. As a result, LTGF can trigger more bugs within the
same amount of time compared to conventional coverage-guided greybox fuzzing (CGF) [46].
However, the target prioritization in existing LTGF approaches is coarse and lacks systematic

design. For example, in two recent LTGF works, F!"#F$%% [50] and P&’"()*+’& [49], they prioritize
targets that have been exercised fewer times by the generated test inputs. Speci"cally, for two
targets 𝐿1 and 𝐿2, let C’$,+(𝐿1) and C’$,+(𝐿2) denote the number of generated test inputs that
∗Corresponding author.

Authors’ Contact Information: Yifan Zhang, Key Laboratory of High Con"dence Software Technologies (Peking University),
Ministry of Education; School of Computer Science, Peking University, Beijing, China, yfzhang23@stu.pku.edu.cn; Xin
Zhang, Key Laboratory of High Con"dence Software Technologies (Peking University), Ministry of Education; School of
Computer Science, Peking University, Beijing, China, xin@pku.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 2475-1421/2026/1-ART17
https://doi.org/10.1145/3776659

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

https://orcid.org/0009-0005-2061-0273
https://orcid.org/0000-0002-1515-7145
https://doi.org/10.1145/3776659
https://orcid.org/0009-0005-2061-0273
https://orcid.org/0000-0002-1515-7145
https://orcid.org/0000-0002-1515-7145
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776659
https://www.acm.org/publications/policies/artifact-review-and-badging-current

17:2 Yifan Zhang and Xin Zhang

have exercised the location of 𝐿1 and 𝐿2, respectively. If C!"#$(𝐿1) < C!"#$(𝐿2), these approaches
will prioritize attempting to trigger vulnerabilities at 𝐿1. Such heuristic-based prioritization is not
only ad-hoc and coarse-grained, but also fails to fully leverage feedback from the fuzzing process,
thereby restricting the e!ectiveness and full potential of LTGF.

To systematically optimize this process, we "rst formally de"ne target prioritization as a reachable
fuzzing targets problem. Speci"cally, we de"ne the probability that each target program property
can be reached by a directed fuzzer. We then formulate the reachable fuzzing targets problem as
predicting whether the probability for each property to be reached by the fuzzer exceeds a given
threshold. To address this problem, we propose a method based on Bayesian program analysis
[26] to predict reachable fuzzing targets. Our method constructs a Bayesian model on top of static
analysis derivations, learns from the fuzzer feedback as posterior information, and ultimately uses
probabilistic inference to compute the probability that each target program property is reachable
by the fuzzer.
Our approach o!ers two major advantages for guiding LTGF: (1) Compared to previous work

[4, 11, 15, 20, 34, 47] on Bayesian program analysis, we fundamentally rede"ne the semantics of
the Bayesian network. For each program property that is over-approximated from the program
semantics, we rede"ne the prediction task from determining whether the property is satis"ed by at
least one input to determining whether the property is reachable by the fuzzer. This enables our
approach to be semantics-aware and !ne-grained. (2) Based on the semantics we de"ned for the
Bayesian network, we systematically present a method to generalize fuzzer feedback as posterior
information, which makes our approach adaptive.

In addition, all existing work [4, 11, 15, 20, 26, 34, 47] has focused on applying Bayesian program
analysis to prioritize static analysis alarms to assist users in manual inspection. In this paper, we
aim to extend the application of Bayesian program analysis to guiding fuzzing, enabling fully
automated bug discovery and demonstrating greater practical utility.
We present B%&’’(), a framework that applies Bayesian program analysis to guide LTGF. The

Bayesian program analysis continuously guides the fuzzer through multiple rounds of interaction.
In each interaction round: (1) The Bayesian model calculates the probability that each target is
reachable by the fuzzer and ranks them accordingly. The fuzzer then attempts to trigger bugs
at the top-ranked targets. (2) For targets where bugs are successfully triggered, it indicates that
such bugs are reachable for the fuzzer. The fuzzer gives positive feedback to the Bayesian model,
increasing the probabilities associated with similar targets, allowing the fuzzer to trigger similar
bugs more quickly. For targets where no bugs are triggered, it indicates that they are false positives
over-approximated by static analysis, or that the fuzzer is currently not capable of triggering them
(for instance, the target is only reachable when a strict condition like if(x == 998244353) is
satis"ed, which makes it hard to trigger during fuzzing). The fuzzer gives negative feedback to the
Bayesian model, decreasing the probabilities of the associated targets, thereby avoiding wasted
e!ort on such bugs. (3) As fuzzing progresses, the fuzzer accumulates more seeds and becomes
increasingly capable. Some previously untriggerable bugs may become triggerable. At this point,
the interaction process restarts, and all previous negative feedback is cleared.

We have implemented B%&’’() on top of the LTGF framework F*+,F"’’ [50], and compared it
against the following fuzzers: (1) P)!+-(.$!) [49], a state-of-the-art LTGF; (2) F*+,F"’’, the base
framework of B%&’’(); (3) F"#F"’’ [45], a non-Bayesian static-analysis-based state-of-the-art CGF;
(4) AFL++ [8], the base framework for all other fuzzers used in our evaluation. We use the same set
of 24 real-world programs and evaluation metrics as P)!+-(.$!). The results show that B%&’’()
discovers 3.25→, 6.5→, 6.5→, and 13→ more unique bugs compared to these baselines. Moreover,
B%&’’() discovers 39 new bugs from well-tested programs, including latest versions of the above

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:3

programs and popular open-source projects supported by OSS-Fuzz [10], 30 of which have been
assigned CVEs.

Contributions. This paper makes the following contributions:

(1) We systematically de"ne the reachable fuzzing targets problem, and by rede"ning the seman-
tics of Bayesian program analysis, we enable both accurate prediction of this problem and
generalization of fuzzer feedback.

(2) We propose a framework B%&’’() for leveraging Bayesian program analysis to systematically
provide "ne-grained, semantics-aware, and adaptive guidance to fuzzing.

(3) We extend the application scope of Bayesian program analysis from ranking static analysis
alarms to guiding fuzzing for fully automated bug discovery.

(4) We show the e!ectiveness of B%&’’() on a suite of real-world programs. B%&’’() demon-
strates stronger bug detection performance compared to the baselines.

2 Motivating Example
This section we illustrate the limitations of the coarse-grained target prioritization adopted by
existing LTGF approaches, and demonstrate how Bayesian program analysis can provide semantics-
aware, "ne-grained, and adaptive guidance to address these issues through two case studies: (1)
We begin with the discovery of CVE-2017-14409 [27] and CVE-2017-14410 [28] in mp3gain-1.5.2.
This case study illustrates the core work#ow of Bayesian program analysis and how it enables
semantics-aware and "ne-grained guidance for fuzzing. (2) We then present the discovery of
CVE-2022-27941 [29] and CVE-2022-27942 [30] in tcpreplay-4.4.0. This case study shows how
Bayesian program analysis can adaptively guide fuzzing to select more suitable targets based on
the fuzzer’s own capabilities.

2.1 A Taint Analysis for Detecting Memory Errors
In this subsection, we "rst introduce the code used in our "rst case study. Then, we apply a taint
analysis written in Datalog to detect potential memory errors in the code. The generated alarms
are used as targets in large-scale target-guided greybox fuzzing (LTGF). LTGF attempts to trigger
potential vulnerabilities at these targets. This taint analysis also serves as the logical component of
the Bayesian program analysis used in the subsequent subsections.

Figure 1 shows a simpli"ed code fragment from mp3gain-1.5.2 that contains CVE-2017-14409
and CVE-2017-14410. For clarity, we partly rewritten the code but keep the semantics related to
the vulnerabilities. Beginning at Line 29, the function get1bit() reads one bit from the input
MP3. The global structure gr_infos holds input metadata, and its "eld mixed_block_flag gets
the value from get1bit(). Next, at Line 30, the code invokes III_i_stereo with gr_info as
an argument. Later, gr_infos->mixed_block_flag contributes to computing is_p at Line 21.
Finally, is_p is used as an array index at Line 22. Without bounds checking on is_p, manipu-
lating gr_infos->mixed_block_flag can cause out-of-bounds access and a global bu!er over-
#ow. This vulnerability corresponds to CVE-2017-14410. CVE-2017-14409 has a similar cause. At
Line 31, III_dequantize_sample is called with gr_info. Then, gr_infos->mixed_block_flag
helps compute pointer m at Line 14, a!ecting xrpnt at Line 15. Finally, the lack of bounds checks
allows the dereference of xrpnt at Line 16 to trigger a global bu!er over#ow by manipulating
gr_infos->mixed_block_flag. Next, at Line 32, getbits_fast reads input and assigns it to
gr_infos->scalefac_compress. Afterwards, the code invokes III_get_scale_factors_1 and
III_get_scale_factors_2 with gr_infos at Line 33 and Line 34. At Line 3 and Line 9, the code
uses gr_infos->scalefac_compress as an array index. Since check_1 and check_2 are invoked

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:4 Yifan Zhang and Xin Zhang

1 static int III_get_scale_factors_1(struct gr_info_s
* gr_infos, ...){

2 if(!check_1(gr_infos->scalefac_compress)) return
-1;

3 int num0 = slen[0][gr_infos->scalefac_compress];
4 ...
5 }
6
7 static int III_get_scale_factors_2(struct gr_info_s

* gr_infos, ...){
8 if(!check_2(gr_infos->scalefac_compress >> 1))

return -1;
9 unsigned int slen = i_slen2[gr_infos->

scalefac_compress >> 1];
10 ...
11 }
12
13 static int III_dequantize_sample(struct gr_info_s*

gr_infos, ...){
14 register int* m = map[sfreq][gr_infos->

mixed_block_flag];
15 real* xrpnt = ((real*)xr) + (*m++);
16 *xrpnt = ispow[y] * v; // CVE-2017-14409

17 ...
18 }
19
20 static void III_i_stereo(struct gr_info_s* gr_infos

, ...){
21 int is_p = scalefac[sfb * 3 + lwin - gr_infos->

mixed_block_flag];
22 real t1 = tabl1[is_p]; // CVE-2017-14410
23 ...
24 }
25
26 struct gr_info_s* gr_infos = ...
27
28 int main(){
29 gr_infos->mixed_block_flag = get1bit();
30 III_i_stereo(gr_infos, ...);
31 III_dequantize_sample(gr_infos, ...);
32 gr_infos->scalefac_compress = getbits_fast(4);
33 III_get_scale_factors_1(gr_infos, ...);
34 III_get_scale_factors_2(gr_infos, ...);
35 ...
36 }

Fig. 1. Simplified code fragment from mp3gain-1.5.2 containing CVE-2017-14409 and CVE-2017-14410.

Input relations
Input(𝑀) : The value of variable 𝑀 comes from external input.

Flow(𝑀1, 𝑀2) : There exists a data #ow from 𝑀1 to 𝑀2.
Memory(𝑀, 𝑁) : 𝑀 involves in memory operations in statement 𝑁 .
Output relations

Taint(𝑀) : Variable 𝑀 is tainted.
Alarm(𝑁) : Statement 𝑁 leads to a memory error.

Derivation rules
𝑂1 : Taint(𝑀) :- Input(𝑀) .
𝑂2 : Taint(𝑀2) :- Taint(𝑀1), Flow(𝑀1, 𝑀2) .
𝑂3 : Alarm(𝑁) :- Taint(𝑀),Memory(𝑀, 𝑁) .

Fig. 2. A taint analysis in Datalog.

at Line 2 and Line 8, respectively, to check the array indices used in the subsequent line, it is ensured
that the indices are within the valid range. Therefore, no out-of-bounds access occurs.
We use a taint analysis to generate alarms in the program. These alarms serve as the target

set for LTGF to attempt to trigger vulnerabilities. Figure 2 shows the taint analysis written in
Datalog. This analysis is context-insensitive but #ow-sensitive. It treats all inputs as taint sources
and propagates taint via potential data #ows. A value is tainted if it can be directly controlled by
an attacker through input. If a tainted variable is used in memory operations (e.g., array indexing
or pointer arithmetic), the analysis raises an alarm. Figure 2 contains full de"nitions of input and
output relations. The analysis uses three derivation rules: 𝑂1 taints inputs, 𝑂2 propagates taint,
and 𝑂3 handles memory operations with tainted values. All three rules over-approximate and can
produce spurious facts. Speci"cally, 𝑂1 and 𝑂3 ignore how branches limit variable ranges, while

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:5

Input(gr_infos->mixed_block_flag)

𝑂1 (gr_infos->mixed_block_flag)

Taint(gr_infos->mixed_block_flag)Flow(gr_infos->mixed_block_flag, is_p)

𝑂2 (gr_infos->mixed_block_flag, is_p)

Taint(is_p)Memory(is_p, Line 22)

𝑂3 (is_p, Line 22)

Alarm(Line 22)

Flow(gr_infos->mixed_block_flag, m)

𝑂2 (gr_infos->mixed_block_flag, m)

Taint(m)Flow(m, xrpnt)

𝑂2 (m, xrpnt) Taint(xrpnt) Memory(xrpnt, Line 16)

𝑂3 (xrpnt, Line 16)Alarm(Line 16)

Input(gr_infos->scalefac_compress)

𝑂1 (gr_infos->scalefac_compress)

Taint(gr_infos->scalefac_compress)Memory(gr_infos->scalefac_compress, Line 3)

𝑂3 (gr_infos->scalefac_compress, Line 3) Alarm(Line 3)

Memory(gr_infos->scalefac_compress, Line 9)

𝑂3 (gr_infos->scalefac_compress, Line 9)Alarm(Line 9)

1

2

34

5

67

8

9

10

11

1213

14 15 16

1718

19

20

2122

23 24

25

2627

Fig. 3. The derivation graph of the analysis in Figure 2 applying to the code fragment in Figure 1. Vertices
with a bordered gray background represent input tuples. Vertices with a bordered white background represent
output tuples, while vertices with a double-bordered white background represent alarms tuples. Vertices
without borders represent rule instances. For brevity, we use a black-circled number at the top right corner of
each vertex to indicate its identifier.

𝑂2 ignores context di!erences. A Datalog engine applies the derivation rules to input tuples and
iterates until reaching a "xed point, where no new output tuples are produced.
We visualize the Datalog derivation as a directed graph for clarity. We refer to such a graph

as the derivation graph. Figure 3 shows the derivation graph from Figure 2 applied to the code
in Figure 1. The graph includes input tuples (bordered, grey), output tuples (bordered, white),
and rule instances (no borders) generating the output tuples. A rule instance represents a single
application of a derivation rule that produces a new output tuple. For instance, 𝑂2 (m, xrpnt) uses
Taint(m) and Flow(m, xrpnt) to derive Taint(xrpnt). Speci"cally, vertices with double borders and
white backgrounds denote alarm tuples. Alarm(Line 16) and Alarm(Line 22) match real bugs CVE-
2017-14409 and CVE-2017-14410. Alarm(Line 3) and Alarm(Line 9) are false positives from static
analysis over-approximation. Since the taint analysis only models whether variables are tainted by
external input and does not model the speci"c values, it cannot determine that the bounds checks
at Line 2 and Line 8 will prevent out-of-bounds array accesses.
If we adopt the existing LTGF target prioritization strategy, which prioritizes targets that have

been exercised the fewest times by generated inputs, two main issues arise: (1) Because the number
of times a focused target is exercised can rapidly increase, all targets tend to receive equal attention in
the long run. As a result, this strategy cannot distinguish between false alarms such asAlarm(Line 3)
and Alarm(Line 9), leading to signi"cant time wasted on these false targets. (2) It fails to associate
alarms. For example, triggering the vulnerabilities at Line 16 and Line 22 is closely related, but
even after successfully triggering the vulnerability at Line 16, the strategy cannot leverage this
information to focus on Alarm(Line 22). Next, we show how Bayesian program analysis addresses
these two issues and helps the fuzzer prioritize more promising alarms.

2.2 Semantics-Aware and Fine-Grained Fuzzing Guidance via Bayesian Program
Analysis

In this subsection, we use the previously introduced taint analysis as the logic for Bayesian program
analysis, and show how it guides fuzzing to "nd CVE-2017-14409 and CVE-2017-14410 while
minimizing the prioritization of false alarms. The core idea is that (1) Bayesian program analysis
builds a semantics-based Bayesian network for semantics-aware guidance; and (2) Bayesian program
analysis ranks fuzzing targets via systematic Bayesian inference. The ranking adapts to fuzzer

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:6 Yifan Zhang and Xin Zhang

Reachable alarm ranking
with no evidence

Directed mutation
towards Alarm(Line 3)

Reachable alarm ranking
with ¬𝑃Alarm(Line 3)

Directed mutation
towards Alarm(Line 22)

Reachable alarm ranking with
¬𝑃Alarm(Line 3) ↑ 𝑃Alarm(Line 22)

Directed mutation
towards Alarm(Line 16)

Alarm(Line 3)
Alarm(Line 3)
is not reachable

Alarm(Line 22)
Alarm(Line 22)
is reachableAlarm(Line 16)

Fig. 4. The full workflow of Bayesian program analysis guiding fuzzing for the code fragment in Figure 1.

feedback, avoiding false positives and revealing bugs with shared root causes, thereby enabling
!ne-grained guidance.
Returning to the case study: since 𝑂1, 𝑂2, and 𝑂3 over-approximate, we assign probabilities to

derivations to capture uncertainty. We simplify by assigning 0.9 probability to each rule. With
this view, the derivation graph becomes a Bayesian network [17]. Each tuple or rule instance 𝑄
maps to a Bernoulli variable 𝑃𝐿 , which indicates whether it holds under the set of inputs that the
fuzzer can generate. For example, Taint(xrpnt) and 𝑂2 (m, xrpnt) correspond to 𝑃Taint(xrpnt) and
𝑃𝑀2 (m,xrpnt) . Their dependencies follow the structure of the derivation graph. For each rule instance,
we specify a corresponding conditional probability. We provide the explicit conditional probability
distribution for this Bayesian network. For brevity, we use the identi"ers at the top right corner of
each vertex in Figure 3 to denote the corresponding vertex:
(1) Input tuple facts: For vertices 𝑅 ↓ {1, 4, 7, 10, 13, 16, 19, 22, 25}, we have Pr(𝑃𝑁) = 1.
(2) Over-approximated inferences of rule 𝑂1: For vertices (𝑅,𝑆, 𝑇) ↓ {(1, 2, 3), (19, 20, 21)},

we have:
Pr(𝑃𝑂 | 𝑃𝑁) = 0.9 Pr(¬𝑃𝑂 | 𝑃𝑁) = 0.1
Pr(𝑃𝑂 | ¬𝑃𝑁) = 0 Pr(¬𝑃𝑂 | ¬𝑃𝑁) = 1
Pr(𝑃𝑃 | 𝑃𝑂) = 1 Pr(¬𝑃𝑃 | 𝑃𝑂) = 0
Pr(𝑃𝑃 | ¬𝑃𝑂) = 0 Pr(¬𝑃𝑃 | ¬𝑃𝑂) = 1

(3) Over-approximated inferences of rules 𝑂2 and 𝑂3: For vertices

(𝑅,𝑆, 𝑇,𝑈) ↓
{(3, 4, 5, 6), (3, 10, 11, 12), (12, 13, 14, 15), (6, 7, 8, 9),
(15, 16, 17, 18), (21, 22, 23, 24), (21, 25, 26, 27)

}

we have:
Pr(𝑃𝑃 | 𝑃𝑁 ↑ 𝑃𝑂) = 0.9 Pr(¬𝑃𝑃 | 𝑃𝑁 ↑ 𝑃𝑂) = 0.1
Pr(𝑃𝑃 | ¬𝑃𝑁 ↔ ¬𝑃𝑂) = 0 Pr(¬𝑃𝑃 | ¬𝑃𝑁 ↔ ¬𝑃𝑂) = 1
Pr(𝑃𝑄 | 𝑃𝑃) = 1 Pr(¬𝑃𝑄 | 𝑃𝑃) = 0
Pr(𝑃𝑄 | ¬𝑃𝑃) = 0 Pr(¬𝑃𝑄 | ¬𝑃𝑃) = 1

This conditional probability distribution links Bernoulli variables via semantics-based probabilistic
relationships.

We present the complete work#ow of Bayesian program analysis guiding fuzzing to ultimately
trigger the target vulnerability in Figure 4. Next, we provide a detailed description of this process.
We compute the probability of each alarm being true by performing marginal inference [32] on the
Bayesian network derived from Figure 3, as shown in Table 1a. As Figure 1 covers only part of the
program, the taint analysis also reports alarms in other parts, including both true and false ones.
To simplify presentation, we include only the four relevant alarms (Line 3, Line 9, Line 22, Line 16)
and exclude the rest.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:7

Table 1. The probability that each alarm can be reached by the fuzzer, based on the Bayesian network
transformed from Figure 3, before and a!er fuzzer feedback on Line 3 and Line 22.

(a) Pr
(
𝑃Alarm(𝑅)

)
Rank Prob. Target 𝑅

1 0.810 Line 3
2 0.810 Line 9
3 0.729 Line 22
· · · · · · · · ·
23 0.656 Line 16
· · · · · · · · ·
· · · · · · · · ·

(b) Pr
(
𝑃Alarm(𝑅) | ¬𝑃Alarm(Line 3)

)
Rank Prob. Target 𝑅

1 0.729 Line 22
· · · · · · · · ·
22 0.656 Line 16
· · · · · · · · ·
233 0.426 Line 9
· · · · · · · · ·
- 0.000 Line 3

(c) Pr
(
𝑃Alarm(𝑅) | ¬𝑃Alarm(Line 3) ↑ 𝑃Alarm(Line 22)

)
Rank Prob. Target 𝑅

- 1.000 Line 22
1 0.729 Line 16
· · · · · · · · ·
232 0.426 Line 9
· · · · · · · · ·
· · · · · · · · ·
- 0.000 Line 3

Alarm(Line 3) and Alarm(Line 9) have the highest probabilities since they involve fewer imprecise
derivations. We select the highest-probability alarm, assumed to be Line 3, as the fuzzing target.
The fuzzer uses directed fuzzing to mutate inputs toward the target, aiming to trigger the potential
bug. As Line 3 is a false positive, the fuzzer fails to trigger the bug. After a period of mutation, the
fuzzer feeds back that the bug is not triggerable. The Bayesian network adds negative evidence
to 𝑃Alarm(Line 3) and updates the probabilities of other alarms accordingly, as shown in Table 1b.
Because 𝑃Alarm(Line 9) is linked to 𝑃Alarm(Line 3) in the network, its probability also drops, leading to
a lower rank. This helps the fuzzer focus on higher-ranked alarms and avoid wasting e!ort on false
positives from the same root cause.

The next highest-probability alarm isAlarm(Line 22), chosen as the next fuzzing target. This alarm
corresponds to CVE-2017-14410. As the bug lacks strict conditions, the fuzzer triggers it quickly.
After triggering, the fuzzer provides positive feedback to the Bayesian network. The network adds
positive evidence to 𝑃Alarm(Line 22) and updates alarm probabilities, as shown in Table 1c. Because
𝑃Alarm(Line 16) is linked to 𝑃Alarm(Line 22), its probability rises and becomes the top-ranked alarm. The
fuzzer then targets Line 16. This alarm corresponds to CVE-2017-14409, which shares the same
root cause as CVE-2017-14410. Both derive from the manipulation of gr_infos->mixed_block
_flag. So the fuzzer quickly triggers this bug as well. Thus, the Bayesian network helps the fuzzer
e$ciently "nd both CVE-2017-14409 and CVE-2017-14410.

2.3 Adaptive Fuzzing Guidance via Bayesian Program Analysis
In this subsection, we present the code for our second case study and show how to improve the
previous approach to guide fuzzing toward CVE-2022-27941 and CVE-2022-27942. The core insight
is that the fuzzer becomes stronger over time. Here, “strong” refers to the increased number of
seeds collected, which enhances the fuzzer’s targeted triggering capability. In early stages,
a weak fuzzer may miss bugs at some targets. We let the fuzzer give negative feedback, and the
Bayesian model steers it away from similar hard-to-trigger patterns. Once the fuzzer improves, we
restart interaction and clear earlier negative feedback. The stronger fuzzer may now reach bugs
that were missed before. When it "nds such bugs, the Bayesian model again guides prioritization
of related targets. This enables adaptive guidance by adjusting feedback types to match the fuzzer’s
evolving capability.
Figure 5 shows simpli"ed code from tcpreplay-4.4.0 with CVE-2022-27941 and CVE-2022-

27942. As in the previous case, the code is simpli"ed for clarity. Beginning at Line 18, safe_pcap
_next() reads a packet from the input PCAP "le and assigns it to pktdata. Then, the code invokes
get_l2len_protocol()with pktdata at Line 20. At Line 8, the code checks the "rst three bytes of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:8 Yifan Zhang and Xin Zhang

1 int parse_mpls(u_char* pktdata, uint32_t* l2len,
...){

2 struct tcpr_mpls_label* mpls_label = pktdata + *
l2len;

3 bool bos = mpls_label->entr; // CVE-2022-27942
4 ...
5 }
6
7 int get_l2len_protocol(u_char* pktdata, uint32_t*

l2offset, ...){
8 if(memcmp(pktdata, !MGC!, 3)) return -1;
9 *l2offset = *((uint16_t*)&pktdata[4]);
10 eth_hdr_t* eth_hdr = (eth_hdr_t*)(pktdata + *

l2offset);

11 uint32_t l2_net_off = sizeof(*eth_hdr) + *
l2offset;

12 uint16_t ether_type = eth_hdr->ether_type; // CVE
-2022-27941

13 parse_mpls(pktdata, &l2_net_off);
14 ...
15 }
16
17 int main(){
18 u_char* pktdata = safe_pcap_next(...);
19 uint32_t l2offset;
20 get_l2len_protocol(pktdata, &l2offset, ...);
21 ...
22 }

Fig. 5. Simplified code fragment from tcpreplay-4.4.0 containing CVE-2022-27941 and CVE-2022-27942.

Input(pktdata[4])𝑂1 (pktdata[4])

Taint(pktdata[4])Flow(pktdata[4], l2offset)

𝑂2 (pktdata[4], l2offset)

Taint(l2offset)Flow(l2offset, eth_hdr)

𝑂2 (l2offset, eth_hdr) Taint(eth_hdr)

Memory(eth_hdr, Line 12) 𝑂3 (eth_hdr, Line 12) Alarm(Line 12)

Flow(l2offset, l2_net_off)

𝑂2 (l2offset, l2_net_off) Taint(l2_net_off) Flow(l2_net_off, mpls_label)

𝑂2 (l2_net_off, mpls_label) Taint(mpls_label) 𝑂3 (mpls_label, Line 3)

Memory(mpls_label, Line 3) Alarm(Line 3)

Fig. 6. The derivation graph of the analysis in Figure 2 applying to the code fragment in Figure 5. Vertices
with a bordered gray background represent input tuples. Vertices with a bordered white background represent
output tuples, while vertices with a double-bordered white background represent alarms tuples. Vertices
without borders represent rule instances.

pktdata. Execution continues only if the bytes match magic number MGC; otherwise, it exits early.
At Line 9, pktdata[4] is assigned to l2offset, later used to compute eth_hdr and l2_net_off
at Line 10 and Line 11. At Line 12, the code accesses a "eld through eth_hdr. Insu$cient bounds
checks may cause this access to trigger a heap bu!er over#ow. This corresponds to CVE-2022-27941.
Next, the code invokes parse_mpls() at Line 13 with l2_net_off as l2len. At Line 2, l2len is
used to compute mpls_label. Finally, at Line 3, a "eld is accessed through mpls_label. Again,
lack of bounds checks may lead to a heap bu!er over#ow. This corresponds to CVE-2022-27942.
We apply the taint analysis from Figure 2 to Figure 5, obtaining the derivation graph shown

in Figure 6. The two alarms, Alarm(Line 12) and Alarm(Line 3), correspond to CVE-2022-27941
and CVE-2022-27942, respectively. We convert the graph into a Bayesian network using the same
conditional probability distribution settings as in the previous case study. We present the complete
work#ow of Bayesian program analysis guiding fuzzing to ultimately trigger the target vulnerability
in Figure 7. Next, we provide a detailed description of this process.
We compute the marginal probabilities of each alarm using Bayesian inference. The resulting

ranking is shown in Table 2a. As before, other alarms are omitted for clarity. We choose the
highest-ranked alarm at Line 12 as the fuzzing target. At the start of fuzzing, the magic number
check at Line 8 stops execution unless the input begins with MGC. Greybox fuzzing lacks semantic
awareness, so the chance of producing an input with the correct MGC pre"x is very low. As a

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:9

Reachable alarm ranking
with no evidence

Directed mutation
towards Alarm(Line 12)

Reachable alarm ranking
with ¬𝑃Alarm(Line 12)

The fuzzer accumulates
seeds over time

Reachable alarm ranking
without negative feedback

Directed mutation
towards Alarm(Line 12)

Reachable alarm ranking
with 𝑃Alarm(Line 12)

Directed mutation
towards Alarm(Line 3)

Alarm(Line 12)
Alarm(Line 12)
is not reachable

Targets other
than Alarm(Line 3)Negative feedback

eliminationAlarm(Line 12)

Alarm(Line 12)
is reachable

Alarm(Line 3)

Fig. 7. The full workflow of Bayesian program analysis guiding fuzzing for the code fragment in Figure 5.

Table 2. The probability that each alarm can be reached by the fuzzer, as computed from the Bayesian
network derived from Figure 6, before and a!er incorporating feedback on Line 12 from fuzzers with di"erent
capabilities.

(a) Pr
(
𝑃Alarm(𝑅)

)
Rank Prob. Target 𝑅

1 0.656 Line 12
2 0.590 Line 3
· · · · · · · · ·
· · · · · · · · ·

(b) Pr
(
𝑃Alarm(𝑅) | ¬𝑃Alarm(Line 12)

)
Rank Prob. Target 𝑅

· · · · · · · · ·
233 0.326 Line 3
· · · · · · · · ·
- 0.000 Line 12

(c) Pr
(
𝑃Alarm(𝑅) | 𝑃Alarm(Line 12)

)
Rank Prob. Target 𝑅

- 1.000 Line 12
1 0.729 Line 3
· · · · · · · · ·
· · · · · · · · ·

result, the fuzzer cannot trigger the real bug due to its limited mutation ability. Later, the fuzzer
reports to the Bayesian network that the bug at Line 12 is not triggered. The network adds negative
evidence to the alarm and updates the probabilities of the other alarms, as shown in Table 2b.
Because 𝑃Alarm(Line 3) is linked to 𝑃Alarm(Line 12), its probability also drops. The paths to both alarms
are similar, and attempts to reach Line 3 are also blocked by the magic number check. This helps
the fuzzer focus on other targets and avoid wasting e!ort on unreachable bugs at the current stage.
Over time, the fuzzer collects more seeds and becomes more e!ective at triggering bugs. Previ-

ously unreachable bugs may now become triggerable. We restart the interaction and clear prior
negative feedback, as those bugs may now be reachable. The updated ranking matches Table 2a, so
we again select Line 12 as the fuzzing target. Through prolonged mutation, the fuzzer eventually
generates an input that passes the magic number check. Once past the check, the bug at Line 12
is easy to trigger and is quickly exposed. The fuzzer reports success to the Bayesian network,
which adds positive evidence to Alarm(Line 12). The Bayesian network then updates the alarm
probabilities based on the new posterior, as shown in Table 2c.

Because 𝑃Alarm(Line 3) is linked to 𝑃Alarm(Line 12), its probability increases and it becomes top-ranked.
The fuzzer then prioritizes Line 3. This corresponds to CVE-2022-27942, which shares the root
cause with CVE-2022-27941. Both derive from manipulating pktdata[4] in the input. As the fuzzer
can now pass the magic check, it quickly triggers this bug as well.
Next, we formalize the de"nition of the problem we address and our proposed solution in

Section 3, and present the detailed design of our B%&’’() framework in Section 4.

3 The Reachable Fuzzing Targets Problem and Our Solution
First of all, we present the problem that this paper aims to solve: how to optimize target prioritization
so that large-scale target-guided greybox fuzzing (LTGF) can trigger more vulnerabilities. We de"ne

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:10 Yifan Zhang and Xin Zhang

a subproblem: how to predict targets that are highly likely to be reached by a fuzzer. By solving
this subproblem, we achieve optimization of the original problem. We begin by providing a formal
de"nition of this problem in Section 3.1, We give the formal de"nitions of Datalog-based program
analysis in Section 3.2. Finally, we formally de"ne our solution to the problem in Section 3.3: we
construct a Bayesian network to predict the probability that each target is reachable by the fuzzer.

3.1 Reachable Fuzzing Targets Problem
Large-scale target-guided greybox fuzzing (LTGF) is a complex process composed of multiple
basic fuzzing processes and consists of two stages: exploration and exploitation. The exploration
stage aims to cover as much code as possible, while the exploitation stage focuses on triggering
vulnerabilities in the target set. We "rst de"ne the notion of targets, then formalize the basic fuzzing
process, and on this basis, de"ne LTGF. Finally, we introduce the subproblem of the reachable
fuzzing targets problem from the exploitation stage of LTGF.
We "rst provide a de"nition for the targets that can be reached by a fuzzer. In fact, a target

typically represents a program property, such as “p points to q”, “x is controlled by external input”,
or “an array out-of-bounds error occurs at Line 17”, and so on. A program property may only hold
under speci"c inputs, and we formalize this notion below.

De!nition 3.1 (program property and program input). We de"ne P as the set of program properties
and S as the set of program inputs. The function H!/0(𝑉, 𝑁) : P → S ↗ {true, false} indicates
whether the program property 𝑉 ↓ P holds when executing the program with input 𝑁 ↓ S.

Next, we de"ne the process of fuzzing. Given an initial set of inputs, a time budget, and a strategy
(which indicates which seed to select for mutation at each iteration), an input is selected according
to the strategy, and then transformed into a new input using various mutator operators. The new
input is then used to test the program. We formally de"ne this process as follows.

De!nition 3.2 (fuzzing). We de"ne a strategy𝑊 (𝑋,𝑌) : P(S)→R ↗ S↘{≃}, which determines, for
the current input set 𝑋 , and the remaining time 𝑌, which input is selected for the next mutation. If
𝑊 returns ≃, it indicates that the remaining time is exhausted and no further mutation is necessary.

Let𝑍 = S → S → [0, 1] → R represent the probability and the total consumed time (mutation and
execution new input) of each input mutating into another new input after one mutation. For any
𝑁 ↓ S, we require that

∑
𝑅⇐ ↓S, (𝑅,𝑅⇐,𝑆 ,𝑇)↓𝑈 𝑎 = 1.

Given a strategy 𝑊 , a total time budget 𝑏 ↓ R and an initial input set 𝑋0 ⇒ S, the process of
fuzzing is formally de"ned as follows:
(1) Initialize the current input set 𝑋cur ⇑ 𝑋0 and the remaining time 𝑌cur ⇑ 𝑏 .
(2) At each step, apply the strategy 𝑊 . If 𝑊 (𝑋cur,𝑌cur) = ≃, terminate the fuzzing process. Other-

wise, select a seed 𝑁 =𝑊 (𝑋cur,𝑌cur) ↓ 𝑋cur, and for all 𝑁⇐ ↓ S such that (𝑁, 𝑁⇐, 𝑎 ,𝑌) ↓ 𝑍 , mutate
𝑁 into 𝑁⇐ with probability 𝑎 . If 𝑌cur < 𝑌, terminate the fuzzing process. Otherwise, consume
time 𝑌cur ⇑ 𝑌cur⇓𝑌, and add the new input to the current input set 𝑋cur ⇑ 𝑋cur↘ {𝑁⇐}. Repeat
this step.

Let 𝑋"nal denote the "nal value of 𝑋cur. We de!ne F!""#$%(𝑊,𝑏 , 𝑋0) as a random vari-
able whose value is the set of 𝑋!nal. We de!ne R&’()&*(𝑊,𝑏 , 𝑋0) as a random variable
whose value is the set of program properties satis!ed by at least one input in 𝑋!nal:
{ 𝑉 | 𝑉 ↓ T’+%&,, ⇔𝑁 ↓ 𝑋!nal such that H-.*(𝑉, 𝑁) is satis!ed }. We assume that if 𝑋0 ⇒ 𝑋 ⇐0
then Pr(R(%.,(0(𝑊,𝑏 , 𝑋0) contains 𝑉) ↖ Pr(R(%.,(0(𝑊,𝑏 , 𝑋 ⇐0) contains 𝑉) holds for each 𝑉 ↓ P.

In practical fuzzers, various strategies are employed. For example, the strategy of a coverage-
guided fuzzer selects inputs that are more likely to reach previously uncovered code, while the
strategy of a directed fuzzer prefers inputs that are closer to the target locations. The last assumption

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:11

Algorithm 1 Large-scale target-guided greybox fuzzing.
Input: The strategy E1-/!)%$*!# and the time budget 𝑏Exploration on exploration stage , the

strategy E1-/!*$%$*!# and the time budgets 𝑏Exploitation, 𝑐 on exploitation stage, the initial
input set 𝑋0, the total time budget 𝑏0, and the target program properties T%)2($.

Output: The set of reached target program properties.
1: procedure LTGF(E1-/!)%$*!#,𝑏Exploration, E1-/!*$%$*!#,𝑏Exploitation, 𝑐, 𝑋0,𝑏0,T%)2($)
2: stage ⇑ Exploration, 𝑋 ⇑ 𝑋0,𝑏 ⇑ 𝑏0
3: while 𝑏 > 0 do
4: if stage = Exploration then
5: 𝑌stage ⇑ min(𝑏 ,𝑏Exploration),𝑏 ⇑ 𝑏 ⇓ 𝑌stage
6: 𝑋 ⇐ ⇑ A sample from F"’’*#2(E1-/!)%$*!#,𝑌stage, 𝑋)
7: 𝑋 ⇑ 𝑋 ⇐

8: stage ⇑ Exploitation
9: else
10: 𝑌stage ⇑ min(𝑏 ,𝑏Exploitation),𝑏 ⇑ 𝑏 ⇓ 𝑌stage
11: repeat
12: 𝑑 ⇑ T%)2($P)*!)*$*’%$*!#(T%)2($, 𝑋)
13: for 𝑉 ↓ 𝑑 do
14: 𝑋 ⇐ ⇑ A sample from F"’’*#2(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋)
15: 𝑋 ⇑ 𝑋 ⇐

16: until The time limit 𝑌stage is reached
17: stage ⇑ Exploration
18: return {𝑉 | 𝑉 ↓ T%)2($, ⇔𝑁 ↓ 𝑋 such that H!/0(𝑉, 𝑁) is sa"s"ed}

in our de"nition can be intuitively explained as follows: when using the same strategy, a larger
input set makes it easier to reach more program properties. Our de"nition does not restrict to any
speci"c strategy; any strategy that satis"es the above assumption can be applied. In practice, all
commonly used strategies meet this criterion.

Next, we formalize large-scale target-guided greybox fuzzing (LTGF) based on the above de"nition.
LTGF consists of two stages: the exploration stage and the exploitation stage, each employing a
di!erent strategy. We de"ne it as follows.

De!nition 3.3 (large-scale target-guided greybox fuzzing). Algorithm 1 formalizes the work#ow of
LTGF. The inputs to LTGF include the strategy for the exploration stage, E1-/!)%$*!# : P(S)→R ↗
S ↘ {≃}, and its time budget 𝑏exploration ↓ R; the strategy mapping for the exploitation stage,
E1-/!*$%$*!# : P ↗ (P(S) → R ↗ S ↘ {≃}), where E1-/!*$%$*!#(𝑉) denotes the strategy for
targeting program property 𝑉; two time budgets for the exploitation stage, 𝑏exploitation, 𝑐 ↓ R; the
initial input set 𝑋0 ⇒ S; the total time budget 𝑏0 ↓ R; and the set of target program properties
T%)2($ ⇒ P. The output of LTGF is the set of target program properties that are "nally reached.

LTGF alternates between the two stages. It starts with the exploration stage, initializing the
current input set 𝑋 and the remaining time 𝑏 (Line 2). For the exploration stage, LTGF calculates the
duration of this stage 𝑌stage (Line 5) and performs one fuzzing iteration using the E1-/!)%$*!# strat-
egy on the current input set 𝑋 (Line 6). For the exploitation stage, LTGF also calculates the stage du-
ration 𝑌stage (Line 10), and within this period, it invokes T%)2($P)*!)*$*’%$*!#(T%)2($, 𝑋) based
on the target set and the existing inputs to generate a critical subset of targets 𝑑 ⇒ T%)2($ (Line 12).
For each target 𝑉 ↓ 𝑑 , it performs a fuzzing run with a time limit 𝑐 using the E1-/!*$%$*!#(𝑉)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:12 Yifan Zhang and Xin Zhang

strategy and the current input set 𝑋 (Line 15). Finally, LTGF returns all target program properties
that can be reached by the generated inputs (Line 18).

The goal of the exploration stage is to cover as much code as possible, while the goal of the
exploitation stage is to leverage the inputs accumulated during the exploration stage to trigger as
many vulnerabilities as possible. In practical fuzzers, for example in F*+,F"’’ [50], the E1-/!)%$*!#
strategy preferentially selects inputs that are closest to uncovered functions associated with existing
targets, and the E1-/!*$%$*!#(𝑉) strategy selects seeds that pass through the location of target 𝑉
and have the fastest execution speed. The reason for selecting multiple seeds in each round via
T%)2($P)*!)*$*’%$*!#(T%)2($, 𝑋) is that, in real-world fuzzing, a single seed may cover multiple
target locations; in this case, it can be regarded as simultaneously applying the E1-/!*$%$*!#(𝑉)
strategy to multiple targets during fuzzing.

The problem this paper aims to address is how to design an appropriate T%)2($P)*!)*$*’%$*!#
algorithm so as to maximize the number of program properties ultimately reached, i.e., maximize
|LTGF(E1-/!)%$*!#,𝑏Exploration, E1-/!*$%$*!#,𝑏Exploitation, 𝑐, 𝑋0,𝑏0,T%)2($) |. Our core idea is, in
the exploitation stage, the targets 𝑉 selected each time should have a high probability of being
reached by the fuzzer, that is, to make R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contain 𝑉 .

The probability distribution of R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) is di$cult to compute directly.
Instead of attempting to solve it explicitly, we consider, for a "xed input set 𝑋 , which program
properties 𝑉 satisfy that Pr(R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contains 𝑉) is no less than a threshold
set by us.

De!nition 3.4 (𝑒-reachable set). Given a threshold 𝑒 ↓ [0, 1], we de"ne R(%.,%3/(𝑉 (𝑋) = {𝑉 |
𝑉 ↓ P, Pr(R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contains 𝑉) ↙ 𝑒}.

Finally, we de"ne a smaller subproblem, the solution to which can e!ectively facilitate solving
the original problem: given a set of program properties (typically potential vulnerabilities in the
program), we seek to predict whether these properties can be triggered with high probabilities by a
fuzzer using a speci"c strategy within a limited time. We formally de"ne this problem as follows.

De!nition 3.5 (reachable fuzzing targets problem). Given a set of program properties T%)2($ ⇒ P
and an input set 𝑋 , for each program property 𝑉 ↓ T%)2($, predict Pr(R(%.,%3/(𝑉 (𝑋) contains 𝑉).
Our idea is to select program properties 𝑉 with a high Pr(R(%.,%3/(𝑉 (𝑋) contains 𝑉) in T%)4

2($P)*!)*$*’%$*!#, thereby increasing the number of target properties ultimately discovered. We
will show how to use Bayesian program analysis to address this problem. Next, we "rst de"ne
Datalog-based program analysis, and then, based on it, further de"ne Bayesian program analysis
for solving this problem.

3.2 Datalog-Based Program Analysis
We "rst formalize the syntax and semantics of a Datalog program, and then describe its correspon-
dence with the Datalog-based program analysis.

De!nition 3.6 (Datalog syntax). We present the auxiliary de"nitions and notations of Datalog in
Figure 8. A relation symbol 𝑎 represents a relation type. A literal 𝑉 is an 𝑌-ary atom with relation
symbol 𝑎 and 𝑌 arguments, each being a variable 𝑀 ↓ V or a constant 𝑈 ↓ D. A tuple 𝑄 is an 𝑌-ary
atom where all elements are constants. A clause 𝑇 is a derivation rule with literals 𝐿0, 𝐿1, . . . , 𝐿𝑇 ,
stating that 𝐿0 follows if 𝐿1, . . . , 𝐿𝑇 hold. A Datalog program 𝑓 = (𝑔 ,𝑕,𝑂) includes input relations
𝑔 ⇒ L, output relations 𝑕 ⇒ L, and derivation rules 𝑂 ⇒ C.

De!nition 3.7 (Datalog semantics). We present the semantics of Datalog in Figure 9. Given
𝑓 = (𝑔 ,𝑕,𝑂) and tuple set 𝑖 , 𝑗𝑀 (𝑖) denotes one round of derivation using rules 𝑂. For each rule

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:13

(variables) V = {𝑀, 𝑀1, 𝑀2, 𝑁, . . . }
(constants) D = {is_p, xrpnt, Line 16, Line 22, 0, 1, . . . }
(relations) R = {Input, Flow,Memory, Taint,Alarm, . . . }
(literals) L = R → (D ↘ V)∝ = {Taint(𝑀), Flow(𝑀1, 𝑀2), . . . }
(tuples) T = R → D∝ = {Taint(m), Flow(m, xrpnt), . . . }
(clauses) C = L → L∝ = {[𝐿0:-𝐿1, . . . , 𝐿𝑇], . . . }

= {[Taint(𝑀2) :- Taint(𝑀1), Flow(𝑀1, 𝑀2)], . . . }

Fig. 8. Auxiliary definitions and notations of Datalog.

𝑗𝑀, 𝑘𝑃 ↓ 𝒽(T) ↗ 𝒽(T)
𝑗𝑀 (𝑖) =𝑖 ↘ {𝑘𝑃 (𝑖) | 𝑇 ↓ 𝑂}
𝑘𝑃 (𝑖) = 𝑘[𝑊0:-𝑊1,...,𝑊𝐿] (𝑖)

= {𝑙 (𝐿0) | 𝑙 (𝐿𝑋) ↓ 𝑖 for 1 ↖ 𝑚 ↖ 𝑌,𝑙 ↓ 𝛚}
[[𝑓,𝑖0]] = lfp(𝑗𝑀,𝑖0)

Fig. 9. Semantics of Datalog.

𝑇 ↓ 𝑂, 𝑘𝑃 (𝑖) is the set of new tuples derived from𝑖 using 𝑇 . Thus, 𝑗𝑀 (𝑖) is𝑖 combined with all newly
derived tuples. A substitution function 𝑙 ↓ ω = V ↗ D maps variables to constants. We extend this
notation to literals by applying the substitution 𝑙 element-wise, replacing each variable with its
corresponding constant and thereby converting the literal into a tuple. For 𝑇 = [𝐿0 :- 𝐿1, . . . , 𝐿𝑇] ↓ 𝑂,
if 𝑙 (𝐿1), . . . ,𝑙 (𝐿𝑇) ↓ 𝑖 , then 𝑙 (𝐿0) is derivable. 𝑘𝑃 (𝑖) collects all such derived tuples. Given input
𝑖0 ⇒ T, the output of Datalog program is [[𝑓,𝑖0]]. [[𝑓,𝑖0]] is the least "xed point of 𝑗𝑀 , computed
by iterating 𝑖 ⇑ 𝑗𝑀 (𝑖) from 𝑖0 until convergence.

A Datalog-based program analysis is also a Datalog program, with the additional constraint that
each tuple in [[𝑓,𝑖0]] corresponds to a program property. For example, Alarm(Line 16) indicates
that there may be a memory error at Line 16.

De!nition 3.8 (Datalog-based program analysis). A Datalog-based program analysis D = (𝑓,
P)!-()$&) consists of a Datalog program 𝑓 and a mapping function P)!-()$& : [[𝑓,𝑖0]] ↗ P.
For each tuple 𝑄 ↓ [[𝑓,𝑖0]], P)!-()$&(𝑄) ↓ P denotes the corresponding program property. We
further require that for any target program property 𝑉 ↓ T%)2($, there exists an injective mapping
T%)2($T"-/(: P ↗ [[𝑓,𝑖0]] from target properties to tuples. For convenience, we use [[D,𝑖0]] to
refer to [[𝑓,𝑖0]].

3.3 Bayesian Program Analysis for Reachable Fuzzing Targets Problem
We "rst formalize how to transform the results of a Datalog-based program analysis into a derivation
graph, which will later serve as the structure of the Bayesian network. Then, we formalize the
Bayesian network for predicting reachable fuzzing targets and describe how to incorporate fuzzer
feedback as posterior information for the Bayesian network.

De!nition 3.9 (derivation graph). Given a Datalog-based program analysis D and input tu-
ples 𝑖0, a rule instance is a derivation using rule 𝑇 = [𝐿0 :- 𝐿1, . . . , 𝐿𝑇]. Formally, a rule instance
is ([𝐿0 :- 𝐿1, . . . , 𝐿𝑇], 𝑄0, . . . , 𝑄𝑇) ↓ C → T∝ where each 𝑄𝑋 ↓ [[D,𝑖0]] and 𝑙 (𝐿𝑋) = 𝑄𝑋 for some substi-
tution function 𝑙 ↓ 𝛚. All rule instances form the set I#+$%#.((D,𝑖0). The derivation graph

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:14 Yifan Zhang and Xin Zhang

is G)%-,(D,𝑖0) = (𝑛 , 𝑜). Vertices 𝑛 include all tuples and rule instances: 𝑛 = [[D,𝑖0]] ↘
I#+$%#.((D,𝑖0). Edges 𝑜 represent rule logic: each rule instance 𝑚 = (𝑇, 𝑄0, . . . , 𝑄𝑇) has 𝑌 + 1
edges (𝑄1, 𝑚), . . . , (𝑄𝑇, 𝑚) and (𝑚, 𝑄0). Cycles may appear in the derivation graph, which signi"cantly
reduces the e$ciency of probabilistic inference. Following prior work [34], we remove cycles and
treat the graph as a directed acyclic graph (DAG).
The derivation graph represents the process by which Datalog-based program analysis over-

approximates program semantics. Each tuple 𝑄 ↓ [[D,𝑖0]] corresponds to a program property
obtained through this semantic over-approximation. Our core idea is to associate a Bernoulli vari-
able with each tuple 𝑄 , indicating whether the corresponding program property P)!-()$&(𝑄) can be
reached by the fuzzer with high probability (i.e., whether R(%.,%3/(𝑉 (𝑋) contains P)!-()$&(𝑄)).
We use the derivation relationships in the graph to set the conditional probabilities for each
variable, thereby transforming the entire derivation graph into a Bayesian network. Each rule
instance 𝑚 = (𝑇, 𝑄0, . . . , 𝑄𝑇) ↓ I#+$%#.((D,𝑖0) in the derivation graph is similarly converted into a
Bernoulli variable. This variable represents whether the resulting program property P)!-()$&(𝑄0)
can be reached by the fuzzer with high probability, given that all the premise program prop-
erties P)!-()$&(𝑄1), . . . , P)!-()$&(𝑄𝑇) can also be reached by the fuzzer with high probabil-
ity. In other words, it indicates whether R(%.,%3/(𝑉 (𝑋) contains P)!-()$&(𝑄0), conditioned on
R(%.,%3/(𝑉 (𝑋) containing P)!-()$&(𝑄1), . . . , P)!-()$&(𝑄𝑇). For each target program property
𝑉 ↓ T%)2($, T%)2($T"-/((𝑉) is a tuple vertex in the derivation graph. Therefore, we can use
the Bayesian network to systematically and semantically predict Pr(R(%.,%3/(𝑉 (𝑋) contains
P)!-()$&(T%)2($T"-/((𝑉))). We formally de"ne the Bayesian network as follows.

De!nition 3.10 (Bayesian network for predicting reachable fuzzing targets). We convert G)%-,(D,
𝑖0) into a Bayesian network [17] B%&(+*%#(D,𝑖0) = (𝑝 ,𝑞). 𝑝 = {𝑃𝑌 | 𝑀 ↓ 𝑛 } is a set of Bernoulli
variables. If 𝑀 = 𝑄 ↓ [[D,𝑖0]], then 𝑃𝑌 indicates whether R(%.,%3/(𝑉 (𝑋) contains P)!-()$&(𝑄).
Otherwise, 𝑀 = 𝑚 = (𝑇, 𝑄0, . . . , 𝑄𝑇) ↓ I#+$%#.((D,𝑖0), then𝑃𝑌 indicates whetherR(%.,%3/(𝑉 (𝑋) con-
tains P)!-()$&(𝑄0), conditioned on R(%.,%3/(𝑉 (𝑋) containing P)!-()$&(𝑄1), . . . , P)!-()$&(𝑄𝑇).
Let P)!3(𝑚) : C → T∝ ↗ [0, 1] be the prior probability that a rule instance 𝑚 is correct. We de"ne
the conditional probabilities for the Bernoulli variables. For rule instance 𝑚 = (𝑇, 𝑄0, . . . , 𝑄𝑇), 𝑃𝑋 is
true with probability P)!3(𝑚) if all 𝑄1, . . . , 𝑄𝑇 are true; otherwise, 𝑃𝑋 is false. Let 𝑚1, . . . , 𝑚𝑍 be rule
instances that derive tuple 𝑄 . Then 𝑃𝐿 is true if and only if at least one 𝑚 𝑎 is correct. Formally:

Pr(𝑃𝑋 | 𝑃𝐿1 ↑ 𝑃𝐿2 ↑ · · · ↑ 𝑃𝐿𝐿) = P)!3(𝑚)
Pr(𝑃𝑋 | ¬𝑃𝐿1 ↔ ¬𝑃𝐿2 ↔ · · · ↔ ¬𝑃𝐿𝐿) = 0
Pr(𝑃𝐿 | 𝑃𝑋1 ↔ 𝑃𝑋2 ↔ · · · ↔ 𝑃𝑋𝑀) = 1
Pr(𝑃𝐿 | ¬𝑃𝑋1 ↑ ¬𝑃𝑋2 ↑ · · · ↑ ¬𝑃𝑋𝑀) = 0

Although the structure of our de"ned Bayesian network is the same as in previous work [4,
11, 15, 20, 47] on Bayesian program analysis, we fundamentally rede"ne its semantics, which
distinguishes our approach from all prior work. We use the Bayesian network to predict whether
each program property can be reached by the fuzzer with high probability, whereas previous work
used the Bayesian network to predict whether each program property can be reached by any
input. Speci"cally, in the Bayesian network of previous work, for each 𝑀 ↓ 𝑛 , if 𝑀 = 𝑄 ↓ [[D,𝑖0]],
then 𝑃𝑌 indicates whether there exists an input 𝑁 ↓ S such that H!/0(P)!-()$&(𝑄), 𝑁) is satis"ed.
Otherwise, 𝑀 = 𝑚 = (𝑇, 𝑄0, . . . , 𝑄𝑇) ↓ I#+$%#.((D,𝑖0), then 𝑃𝑌 indicates whether there exists an input
𝑁 ↓ S satisfying H!/0(P)!-()$&(𝑄0), 𝑁), conditioned on the existence of inputs 𝑁1, . . . , 𝑁𝑇 ↓ S such
that H!/0(P)!-()$&(𝑄𝑋), 𝑁𝑋) satis"es for each 𝑚 .
The prior probabilities P)!3 can be de"ned precisely in theory, but are di$cult to compute in

practice. To bridge the gap between theory and practice, we employ approximate methods for

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:15

estimating these probabilities, such as manual annotation by experts [34] or data-driven learning
from labeled programs [15]. For example, the "nal inputs generated by multiple fuzzing processes
can serve as labels to indicate whether each tuple holds or each rule instance is correct. These
methods have been shown to be e!ective by our empirical evaluation. Therefore, our approach
is systematic and self-consistent in theory. At the same time, by approximating the only
hard-to-compute module in practice, we achieve an e!ective and practical implementation.

Nevertheless, when facedwith the complexity of real-world fuzzing problems, a Bayesian network
based solely on prior knowledge may not deliver satisfactory results. To address this limitation, we
propose a method for generalizing posterior information by leveraging fuzzer feedback.

De!nition 3.11 (fuzzer feedback). The evidence set of the initial Bayesian network is 𝑜 =
′. For a target program property 𝑉 ↓ T%)2($, if we take a sample of the random variable
R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) and it contains 𝑉 , we give positive feedback to the Bayesian net-
work by updating 𝑜 ⇑ 𝑜↘{𝑃T%)2($T"-/((𝑏) }; otherwise, we give negative feedback by updating 𝑜 ⇑
𝑜 ↘ {¬𝑃T%)2($T"-/((𝑏) }. At any time, for a target program property 𝑉 ↓ T%)2($, we can use a prob-
abilistic inference algorithm on the Bayesian network [32] to compute Pr

(
𝑃T%)2($T"-/((𝑏) |

∧
𝑐↓𝑑 𝑟

)
under the current evidence 𝑜 in order to make predictions for the reachable fuzzing targets problem.
We de"ne three interactive operations:

(1) U-0%$((𝑠, 𝑄, 𝑟) updates the evidence for variable 𝑃𝐿 in the evidence set 𝑜 to 𝑟 . Here, 𝑄 ↓
[[D,𝑖0]], and 𝑟 can be true evidence (𝑜 ⇑ 𝑜 ↘ {𝑃𝐿 }), false evidence (𝑜 ⇑ 𝑜 ↘ {¬𝑃𝐿 }), or no
evidence (𝑜 ⇑ 𝑜 ⇓ {𝑃𝐿 } ⇓ {¬𝑃𝐿 }).

(2) I#5()(#.((𝑠) performs inference [32] on 𝑠 to compute probabilities of all variables given
the current evidence 𝑜.

(3) 6()&(𝑠, 𝑄) returns Pr (𝑃𝐿 |
∧

𝑐↓𝑑 𝑟), the probability that 𝑃𝐿 is true given the current evidence
𝑜. Here, 𝑄 ↓ [[D,𝑖0]].

The fuzzer feedback can be easily obtained during the exploitations stage (Line 15). However,
since 𝑃T%)2($T"-/((𝑏) being true is equivalent to the fuzzer reaching 𝑉 with probability at least 𝑒,
which is not the same as a single sample of R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) containing 𝑉 , our
de"nition of the posterior information feedback introduces an error rate. We compute this error
rate as follows.

T,(!)(7 3.12. Suppose the probability of giving positive feedback is 𝑎+, and the probability of
giving negative feedback is 1 ⇓ 𝑎+, then the average error rate does not exceed 𝑎+ + 1 ⇓𝑒.

P)!!5. Let the Bernoulli variables 𝑡1 denote “giving positive feedback” and 𝑡2 denote
𝑃T%)2($T"-/((𝑏) . Then the average error rate is

𝑡average = Pr(𝑡1) Pr(¬𝑡2 |𝑡1) + Pr(𝑡2) Pr(¬𝑡1 |𝑡2)
where Pr(𝑡1) = 𝑎+, Pr(¬𝑡2 |𝑡1) ↖ 1, and Pr(𝑡2) ↖ 1. Pr(¬𝑡1 |𝑡2) denotes the probability of still
giving negative feedback (i.e., obtaining a sample without 𝑉 from R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋))
when 𝑃T%)2($T"-/((𝑏) holds (i.e., Pr(R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contains 𝑉) ↙ 𝑒). Thus,
Pr(¬𝑡1 |𝑡2) ↖ 1 ⇓𝑒. Therefore, we have:

𝑡average = Pr(𝑡1) Pr(¬𝑡2 |𝑡1) + Pr(𝑡2) Pr(¬𝑡1 |𝑡2)
↖ Pr(𝑡1) + Pr(¬𝑡1 |𝑡2)
↖ 𝑎+ + 1 ⇓𝑒

⊋

We can make a conservative estimate: a sound static analysis typically produces about 10% true
positive reports, and a fuzzer, due to its mutation capabilities, can generally discover only around

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:16 Yifan Zhang and Xin Zhang

Large-Scale Target-Guided Greybox Fuzzing

Exploration Exploitation

Coverage-guided
mutation

Stronger capability
to detect bugs

Target
prioritization

Directed
mutation

Bayesian Program Analysis

Feedback based on
current capability

Bayesian
network

Negative feedback elimination

Static analyzer

Inputs
Outputs
Rules

Program to be
analyzed

Rank based on
the probability of
being reachable

Derivation graph

Fig. 10. Overview of framework B!"##$% for guiding large-scale target-guided grey-box fuzzing.

10% of vulnerabilities. Thus, 𝑎+ = 0.1 → 0.1 = 0.01. If we set 𝑒 = 99%, the average error rate is
𝑡average ↖ 𝑎+ + 1 ⇓𝑒 = 0.01 + 1 ⇓ 0.99 = 0.02.

In summary, we have rigorously de"ned a Bayesian program analysis. This analysis uses Bayesian
networks to semantically predict the reachable fuzzing targets problem. At the same time, it can
generalize feedback from the fuzzer as posterior information with a very low error rate. We will
describe in the next section how to use this analysis to guide LTGF thus enhance its vulnerability
detection capability.

4 The B!"##$% Framework
Recall that the problem this paper aims to solve is how to optimize target prioritization so that large-
scale target-guided greybox fuzzing (LTGF) can ultimately reach more vulnerabilities. Figure 10
presents the work#ow of B%&’’() for addressing this problem. B%&’’() predicts the probability
that each target program property is reachable by the fuzzer through Bayesian program analysis,
prioritizing targets with higher probabilities. Meanwhile, B%&’’() processes fuzzer feedback in
the following two ways to make predictions more accurate: (1) B%&’’() generalizes the directed
fuzzing results for each target during the exploitation phase as posterior information; (2) after each
exploration phase, when the fuzzer has accumulated a large number of seeds and its capability has
increased, previous negative feedback may become inaccurate, so B%&’’() removes them to ensure
the precision of its predictions. In this section, we present the framework of B%&’’(). We begin by
describing the overall work#ow of our framework in Section 4.1, followed by the formalization
of the target prioritization algorithm in Section 4.2. Finally, we present the details of how fuzzer
feedback is processed in Section 4.3.

4.1 Overall Workflow
Algorithm 2 formalizes the work#ow of B%&’’(). The work#ow of B%&’’() is based on LTGF.
Compared with LTGF, the inputs of B%&’’() are extended with an additional Bayesian network
𝑠 = B%&(+*%#(D,𝑖0), where D is the Datalog-based program analysis and 𝑖0 is its input tuples,
obtained via the compiler front-end or through a pre-analysis. The output of B%&’’() is the same
as that of LTGF, namely, the set of target program properties ultimately reached by the fuzzer. All
lines that di!er from LTGF are highlighted in gray shade. First, in the exploitation stage, B%&’’()

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:17

Algorithm 2 The B%&’’() framework.
Input: The strategy E1-/!)%$*!# and the time budget 𝑏Exploration on the exploration stage , the

strategy E1-/!*$%$*!# and the time budgets 𝑏Exploitation, 𝑐 on the exploitation stage, the initial
input set 𝑋0, the total time budget 𝑏0, the target program properties T%)2($, and the Bayesian
network 𝑠 for predicting reachable fuzzing targets.

Output: The set of reached target program properties.
1: procedure B%&’’()(E1-/!)%$*!#,𝑏Exploration, E1-/!*$%$*!#,𝑏Exploitation, 𝑐, 𝑋0,𝑏0,T%)2($,𝑠)
2: stage ⇑ Exploration, 𝑋 ⇑ 𝑋0,𝑏 ⇑ 𝑏0
3: while 𝑏 > 0 do
4: if stage = Exploration then
5: 𝑌stage ⇑ min(𝑏 ,𝑏Exploration),𝑏 ⇑ 𝑏 ⇓ 𝑌stage
6: 𝑋 ⇐ ⇑ A sample from F"’’*#2(E1-/!)%$*!#,𝑌stage, 𝑋)
7: 𝑋 ⇑ 𝑋 ⇐

8: stage ⇑ Exploitation
9: R(.!#+$)".$*!#(𝑠,T%)2($)
10: else
11: 𝑌stage ⇑ min(𝑏 ,𝑏Exploitation),𝑏 ⇑ 𝑏 ⇓ 𝑌stage
12: repeat
13: 𝑑 ⇑ T%)2($P)*!)*$*’%$*!#(𝑠,T%)2($)
14: for 𝑉 ↓ 𝑑 do
15: 𝑋 ⇐ ⇑ A sample from F"’’*#2(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋)
16: 𝑋 ⇑ 𝑋 ⇐

17: F"’’()F((03%.8(𝑠, 𝑋, 𝑑)
18: until The time limit 𝑌stage is reached
19: stage ⇑ Exploration
20: return {𝑉 | 𝑉 ↓ T%)2($, ⇔𝑁 ↓ 𝑋 such that H!/0(𝑉, 𝑁) is sa"s"ed}

ranks the reachable fuzzing targets based on their predicted probabilities obtained from Bayesian
program analysis (Line 13). Then, B%&’’() uses the results of directed fuzzing on these targets as
feedback to the Bayesian network, improving the accuracy of predictions (Line 17). Finally, after
each round of the exploration stage, the input set 𝑋 increases signi"cantly. B%&’’() updates its
prediction of reachable fuzzing targets for the new input set by reconstructing the fuzzer feedback
accordingly (Line 9). In Section 4.2, we describe the speci"c target prioritization algorithm (Line 13),
and in Section 4.3, we detail how to handle fuzzer feedback (Line 9 and Line 17).

4.2 Target Prioritization
Algorithm 3 formalizes the target prioritization algorithm used in B%&’’(). Given a Bayesian net-
work 𝑠 and a target set T%)2($, the algorithm outputs a prioritized subset of targets 𝑑 . B%&’’() "rst
performs probabilistic inference on the Bayesian network 𝑠 to compute the probability distribution
over relevant variables (Line 2). Then, B%&’’() maintains a critical target set 𝑑 (initially empty)
and a set of targets without feedback (i.e., no evidence assigned to 𝑃T%)2($T"-/((𝑏) in the Bayesian
network 𝑠), denoted 𝑑N ⇒ 𝑑 (Line 3). For each target 𝑉 ↓ 𝑑N, B%&’’() computes the probability
𝑎𝑏 that the target 𝑉 is reachable, based on the inference results from 𝑠 (Line 5). Finally, B%&’’()
selects the top-𝑢 · |T%)2($| targets (rounded down) with the highest probabilities into 𝑑 (Line 7),
where 𝑢 ↓ (0, 1) is a tunable hyperparameter. If 𝑑N contains fewer than 𝑢 · |T%)2($| targets, all of
them are included in 𝑑 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:18 Yifan Zhang and Xin Zhang

Algorithm 3 The target prioritization algorithm in the B%&’’() framework.
Input: The Bayesian network 𝑠 and the target set T%)2($.
Output: The critical target set 𝑑 .
1: procedure T%)2($P)*!)*$*’%$*!#(𝑠,T%)2($)
2: I#5()(#.((𝑠)
3: 𝑑 ⇑ ′, 𝑑N ⇑

{
𝑉 | 𝑉 ↓ T%)2($,No evidence on 𝑃T%)2($T"-/((𝑏)

}
4: for 𝑉 ↓ 𝑑N do
5: 𝑎𝑏 ⇑ 6()&(𝑠,T%)2($T"-/((𝑉))
6: Let 𝐿𝑋 be the 𝑚-th largest target 𝑉 ↓ 𝑑N ranked by 𝑎𝑏
7: for 𝑚 = 1 ↗ min (|𝑑N |, ∞𝑢 · |T%)2($|∈) do
8: 𝑑 ⇑ 𝑑 ↘ {𝐿𝑋 }
9: return 𝑑

Algorithm 4 The fuzzer feedback algorithm in the B%&’’() framework.
Input: The Bayesian network 𝑠, the current seed set 𝑋 , and the critical target set 𝑑 .
1: procedure F"’’()F((03%.8(𝑠, 𝑋, 𝑑)
2: for 𝑉 ↓ 𝑑 do
3: if ⇔𝑁 ↓ 𝑋 such that H!/0(𝑉, 𝑁) is satis"ed then
4: U-0%$((𝑠, T%)2($T"-/((𝑉), true evidence)
5: else
6: U-0%$((𝑠, T%)2($T"-/((𝑉), false evidence)

For a target program property 𝑉 ↓ 𝑑 and the current input set 𝑋 , the probability we pre-
dict is 𝑎𝑏 = Pr

(
𝑃T%)2($T"-/((𝑏) |

∧
𝑐↓𝑑 𝑟

)
, where each evidence 𝑟 comes from a sampling of

R(%.,(0(E1-/!*$%$*!#(𝑉⇐), 𝑐, 𝑋 ⇐) during the current exploitation stage. Here, 𝑉⇐ ↓ T%)2($ is
the target corresponding to this sampling, and 𝑋 ⇐ denotes the input set at the time of sampling.
However, 𝑃T%)2($T"-/((𝑏) predicts whether R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contains 𝑉 under the
current input set 𝑋 . Because the goal of the exploitation stage is not to further increase coverage,
the input set remains largely unchanged within a single round. We therefore assume 𝑋 ∋ 𝑋 ⇐, i.e.,
the two are nearly identical. As a result, the predictions produced by our Bayesian network are
approximate, but the associated error is minimal and can be considered negligible.

4.3 Processing Fuzzer Feedback
Algorithm 4 formalizes the fuzzer feedback algorithm used in B%&’’(). It takes as input the
Bayesian network 𝑠, the current input set 𝑋 and the critical target set 𝑑 used in the current round
of exploitation stage. For each target 𝑉 ↓ 𝑑 , B%&’’() checks whether a new input has been
found in this round of mutation that reaches 𝑉 (Line 3). If so, this indicates that the sample on
R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋) contains 𝑉 . In this case, B%&’’() sends a positive feedback to the
Bayesian network 𝑠 (Line 4). If not, this indicates that the sample on R(%.,(0(E1-/!*$%$*!#(𝑉),
𝑐, 𝑋) does not contain 𝑉 . In this case, B%&’’() sends a negative feedback to the Bayesian network 𝑠
(Line 6).

Algorithm 5 formalizes the feedback reconstruction algorithm used in B%&’’(). During the
new round of the exploration stage, the fuzzer accumulates a large number of new seeds; con-
sequently, the current input set 𝑋 will di!er signi"cantly from the input set 𝑋 ⇐ during the last
exploitation stage. Therefore, feedback reconstruction is necessary in order to perform more
accurate computations based on the current seed set 𝑋 . Since if the input set 𝑋 ⇐ ⇒ 𝑋 , then

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:19

Algorithm 5 The feedback reconstruction algorithm in the B%&’’() framework.
Input: The Bayesian network 𝑠 and the target set T%)2($.
1: procedure R(.!#+$)".$*!#(𝑠,T%)2($)
2: for 𝑉 ↓ 𝑑 do
3: if False evidence on 𝑃T%)2($T"-/((𝑏) then
4: U-0%$((𝑠,T%)2($T"-/((𝑉), no evidence)

we have Pr(R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋 ⇐) contains 𝑉) ↖ Pr(R(%.,(0(E1-/!*$%$*!#(𝑉), 𝑐, 𝑋)
contains 𝑉) holds for each 𝑉 ↓ P, thus R(%.,%3/(𝑉 (𝑋 ⇐) ⇒ R(%.,%3/(𝑉 (𝑋). Based on this con-
clusion, our reconstruction algorithm is as follows: we retain all positive feedback, because if
R(%.,%3/(𝑉 (𝑋 ⇐) contains 𝑉 , then R(%.,%3/(𝑉 (𝑋) will also contain 𝑉 . In contrast, we remove all
negative feedback (Line 4), since if R(%.,%3/(𝑉 (𝑋 ⇐) does not contain 𝑉 , it is still possible that
R(%.,%3/(𝑉 (𝑋) contains 𝑉 . Intuitively, as the input set grows, the fuzzer becomes more powerful,
and previously unreachable targets may become reachable. Through reconstruction, we e!ectively
avoid inaccurate predictions.

5 Experimental Evaluation
Our evaluation aims to answer the following questions:
RQ1. How e!ective is B%&’’() at "nding bugs compared to other fuzzers?
RQ2. What is the performance overhead introduced by the Bayesian program analysis in B%&’’()?
RQ3. As the fuzzer accumulates more seeds, we remove all negative feedback to avoid inaccurate

predictions. Is this step necessary?
RQ4. Can B%&’’() discover real-world bugs?

We "rst describe our experimental setup in Section 5.1. Then, we answer the four research
questions in Section 5.2 to Section 5.5, respectively.

5.1 Experimental Setup
We conduct our experiments on Linux machines with 256 processors (2.25 GHz) and 256 GB of
RAM. We implement B%&’’() on top of F*+,F"’’ [50]. All LTGF logic (as described in Section 3.1)
is preserved exactly as in F*+,F"’’. We use libDAI [31] to perform probabilistic inference on the
Bayesian network.

Instance analysis.We use the Datalog analysis shown in Figure 2 as the logic core of our Bayesian
program analysis. To construct the input tuples: (1) We use the SVF [42] framework to build a
sparse value-#ow graph (SVFG) for the program. Each edge in this graph represents a potential
data #ow and we convert it into a corresponding Flow input tuple. (2) We use ASan [38] to detect
potential memory errors. ASan inserts runtime checks at locations that may trigger memory errors.
We convert each of these alarm sites into a corresponding Alarm input tuple. (3) We conservatively
assume all variables may be in#uenced by inputs by adding an Input(𝑀) tuple for each variable
𝑀 . This simpli"es control-dependence handling, avoiding missed taints when input values a!ect
control #ow (e.g., loop conditions). While this leads to an imprecise taint analysis and preserves all
ASan alarms, it remains e!ective since Bayesian program analysis relies more on the derivation
graph structure than the analysis precision [47].
Hyperparameter. We set the selected ratio 𝑢 of critical targets to 0.25. Our experiments show

that this choice of hyperparameter leads to strong performance. In practice, fuzzing tools often
involve many such hyperparameters. These can be tuned by evaluating di!erent settings on similar
programs to identify more e!ective con"gurations.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:20 Yifan Zhang and Xin Zhang

Baselines.We compare our approach against the following baselines: (1) P)!+-(.$!) [49], the cur-
rent state-of-the-art LTGF technique. P)!+-(.$!) builds upon F*+,F"’’ and introduces enhanced
strategies for each phase of the LTGF work#ow. (2) F*+,F"’’ [50], the LTGF-based fuzzer that our
approach is built upon. (3) F"#F"’’ [45], the current state-of-the-art CGF technique. F"#F"’’ uses
a coarse-grained non-Bayesian static analysis to assign signi"cance scores to functions based on the
call graph, guiding the fuzzer to mutate seeds more e!ectively. We include F"#F"’’ to demonstrate
that our Bayesian program analysis provides stronger guidance for fuzzing than conventional static
analysis. (4) AFL++ [8], which serves as the foundational fuzzer for all three baselines and our
approach.

Benchmarks. We use the same benchmark suite as P)!+-(.$!), which consists of 24 real-world
programs. Among them, 19 programs are from U#*F"’’ [21], and the remaining 5 are taken from
the benchmark used by F*+,F"’’. During compilation, we instrument all programs with ASan [38],
and treat all ASan alarms as the target set for our method as well as for the two LTGF baselines
(P)!+-(.$!) and F*+,F"’’). The number of targets per program ranges from 382 (gif2tga) to
108,495 (MP4Box), with an average of 21,214 targets per program.

Metrics. We repeat the experiments for each fuzzer on each program 10 times, with a runtime of
60 hours per experiment (the same as F*+,F"’’, and longer than the 24 hours used by P)!+-(.$!)).
Our total experimental runtime amounts to approximately 9.86 CPU-years. We conduct each run
in a Docker container, with a speci"c CPU core assigned. We adopt the same bug triage scheme as
P)!+-(.$!), where each crash is classi"ed into a unique bug identi"ed by a CVE or issue number
based on the ASan stack trace. This mapping scheme is identical to that used by P)!+-(.$!). For
each bug, we record the time-to-exposure (TTE) of the "rst trigger during each fuzzing process.
For the 10 repeated experiments, we compute the median TTE. If a bug is not triggered in any
given run, its TTE is set to +△. If no more than half of the repeated experiments trigger the bug,
the median TTE is also computed to +△, indicating that the corresponding fuzzer is unable to
consistently trigger the bug. We compare the e!ectiveness of di!erent fuzzers by counting the
number of bugs uniquely discovered by each fuzzer, where a bug is considered uniquely discovered
if it is the only fuzzer with a median TTE ω +△ for that bug.

5.2 E!ectiveness
We visualize the bug sets in a Venn diagram in Figure 11 to provide an intuitive view of bug discovery
overlap among fuzzers. Each number in the diagram represents the size of the intersection between
the corresponding sets. B%&’’() uniquely discovers 13 bugs, whereas P)!+-(.$!), F*+,F"’’,
F"#F"’’, and AFL++ only "nd 4, 2, 2, and 1 unique bugs, respectively. The number of unique bugs
discovered by B%&’’() is not only 3.25→ to 13→ higher than each baseline, but also 1.4→ higher
than the total number of unique bugs found by the other baselines combined (9 bugs), which fully
demonstrates the e!ectiveness of B%&’’() in "nding vulnerabilities. A key observation is that,
beyond the 46 basic bugs found by all fuzzers, the 13 bugs discovered uniquely by B%&’’() form the
largest subset, even exceeding the 8 bugs jointly found by all three LTGF-based fuzzers (B%&’’(),
P)!+-(.$!), and F*+,F"’’). This further highlights that B%&’’() transforms LTGF into a more
powerful framework through the integration of Bayesian program analysis.
We present the bug discovery curves over time in Figure 12, where the discovery time of each

bug is measured using its median TTE. The performance of B%&’’() in the "rst 40 hours shows
only limited improvement compared to the two LTGF-based fuzzers. This is because, in the initial
phase of fuzzing, the Bayesian network receives limited feedback, making its probability rankings
less e!ective in guiding the fuzzer. However, as fuzzing progresses, the Bayesian network adapts
based on increasing feedback, allowing it to provide more focus guidance. As a result, B%&’’()
discovers a large number of bugs in the "nal 20 hours, signi"cantly outperforming all other fuzzers.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:21

� ��

�

�

�

�

�

�

�

�

�
�

�

�

��

�

��

�

� �
�

�

�

�

�

�

�

�	

�
�����

	���������

���
����

������������

Fig. 11. Venn diagram of bugs discovered by each fuzzer.

� �� �� 	�
� �� ��
������������

�

��

�

��

�

�
��

��
��

��
��

��
��

��
��

�

�
�����
	���������
���
����
�������
�����

Fig. 12. Number of bugs discovered by each fuzzer throughout the entire fuzzing process. The discovery time
of each bug is represented by its median TTE across 10 runs.

We present the median TTE for each fuzzer on the bugs it discovered in Table 3. Due to space
constraints, we only present a subset of bugs where B%&’’() exhibits signi"cantly better per-
formance compared to the other baselines. We present the complete results in the appendix. We
demonstrate that B%&’’() triggers bugs in multiple programs much faster than other baselines,
which intuitively indicates that B%&’’() possesses a signi"cantly di!erent vulnerability exploration
capability compared to other fuzzers. Moreover, B%&’’() achieves strong performance across
various types of programs. To quantitatively support this conclusion, we follow the same evaluation
strategy as used in P)!+-(.$!) to summarize the performance of B%&’’() against each baseline

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:22 Yifan Zhang and Xin Zhang

Table 3. Median TTE (time-to-exposure) of each fuzzer over 10 runs on 24 real-world programs. N.A. (𝑃)
indicates that the median TTE is +△, and the corresponding fuzzer triggered the bug in 𝑃 out of 10 runs.
For each bug, the best-performing fuzzer is highlighted in bold. Due to space constraints, we only present a
subset of bugs where B!"##$% exhibits significantly be#er performance compared to the other baselines. The
complete results are provided in the appendix. In the row Performance vs. B!"##$%, the value 𝑅/𝑆 indicates
that B!"##$% outperforms the compared fuzzer on 𝑅 bugs, while the compared fuzzer performs be#er on 𝑆
bugs. This count is used to compute the p-value from the sign test, as shown in the next row.

Program Bug ID B’/""&+ P+-01&(,-+ F#0)F!"" F!$F!"" AFL++

jhead jhead-issue-8 15m18s 15m28s 19m18s N.A. (2) N.A. (1)

wav2swf
CVE-2017-11099 10s 16s 14s 17s 13s
wav2swf-unknown-1 1m5s 41m52s 41m30s 1h31m 59m7s

tiffsplit
libti!-issue-2243 19m10s 1h18m 1h44m 57m14s 2h21m
libti!-issue-1936 2h21m 18h10m 7h15m 13h59m 43h53m
libti!-unknown-6 33h25m N.A. (4) N.A. (5) N.A. (5) N.A. (4)

MP4Box
gpac-unknown-101 39h23m N.A. (4) 57h12m N.A. (5) N.A. (3)
CVE-2018-13005 45h52m N.A. (1) N.A. (3) N.A. (1) N.A. (0)

nasm
CVE-2018-8882 20h25m N.A. (5) N.A. (3) N.A. (2) N.A. (1)
CVE-2018-16517 45h44m N.A. (3) N.A. (1) N.A. (1) N.A. (1)

mujs CVE-2016-7564 2m53s 13m25s 4m7s 5m1s 6m58s

tcpdump
515bf64e 20h57m N.A. (0) N.A. (3) N.A. (3) N.A. (3)
64f63920 40h13m N.A. (2) N.A. (0) N.A. (1) N.A. (2)

jq jq-unknown-1 53m49s 1h32m 1h41m 1h47m 1h36m

tic CVE-2017-13730 15h11m 21h41m 36h23m 23h2m 20h3m

mp3gain CVE-2017-14407 6m32s 7m56s 56m7s 10m30s 11m16s

Performance vs. B’/""&+ 101/66 94/70 109/61 123/43
P-value in the sign test 0.004 0.036 1.4 → 10⇓4 2 → 10⇓10

on a per-bug basis, as shown in the Performance vs. B’/""&+ row in Table 3. For each bug, the
fuzzers are compared based on their median TTE. If the median TTE is +△ for both fuzzers, we
instead compare the number of runs in which the bug is successfully triggered. This results in
a count of 𝑅/𝑆, where 𝑅 denotes the number of bugs for which B%&’’() performs better, and 𝑆
indicates the opposite. We then perform a one-tailed sign test [12] using these counts, with 𝑅 and 𝑆
corresponding to the number of positive and negative signs, respectively. We present the resulting
p-values in Table 3. All p-values are below 0.05, indicating that B%&’’() signi"cantly outperforms
the baselines in terms of bug discovery performance.

We present the median TTE for the four CVEs discussed in the two case studies in Section 2, as
shown in Table 4. For the two CVEs in mp3gain, B%&’’() triggered both in the shortest amount of
time. For the two CVEs in tcpprep, as described in Section 2.3, CVE-2022-27942 involves a longer
call chain than CVE-2022-27941 and is therefore more di$cult to trigger. B%&’’() is the only fuzzer
that consistently triggered CVE-2022-27941, and also the only one that triggered CVE-2022-27942
in 4 out of 10 runs, whereas all other fuzzers triggered it at most twice. By quantitatively validating
the case study observations through experiments, we further demonstrate B%&’’()’s superior
ability to expose hard-to-reach bugs through more e!ective guidance.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:23

Table 4. Median TTE of each fuzzer over 10 runs for the four CVEs discussed in the two case studies from
Section 2.

Program Bug ID B’/""&+ P+-01&(,-+ F#0)F!"" F!$F!"" AFL++

mp3gain
CVE-2017-14409 4m16s 7m4s 56m2s 10m24s 11m16s
CVE-2017-14410 6m13s 8m52s 56m41s 10m40s 11m51s

tcpprep
CVE-2022-27941 39h36m N.A. (5) N.A. (5) N.A. (4) N.A. (1)
CVE-2022-27942 N.A. (4) N.A. (1) N.A. (2) N.A. (1) N.A. (2)

	

��
�#

��
��
"

�#
�!
�

��
!�
��
�
��
��

��
#

 �
�

��
#�
��
�

��
��
��
�

��
��
��
�

��
��
� ��

��
��

��
 �
��
��
�

��

�
�

��
��
��
�

�

	 �����

���	�

	�

�

��

�
����� ���
�

�����

�����

���
�

����� ���
� ���
�

��
��
��
�

�
��

��
��

��
��
�"

�

��
 �
�

��
��
��
�#
�

��
��
��
�

��
��
 �
�

��
��
��
�

��
�

��
��
��
��
�

"�
!�
�"
�

�

	

���	�

�����
���
�

����� ����� ���
�
���	� ��
�� ��	�� ��	��

��
��

���
��
��

��
��

��
��

��
�

��
��

��
��

��
���

�

Fig. 13. The average runtime overhead introduced by Bayesian inference across 10 fuzzing runs for each
program.

In summary, B%&’’() leverages Bayesian program analysis to guide LTGF, enabling it to discover
bugs more e!ectively than other fuzzers.

5.3 Overhead of Bayesian Program Analysis
The overhead introduced by Bayesian program analysis consists of two parts: (1) the time to perform
static analysis and construct the derivation graph; (2) the time spent on Bayesian inference during
fuzzing. For (1), the graph construction time ranges from 0.151 seconds (gif2tga) to 169 seconds
(MP4Box) across programs, with an average of 21.4 seconds. This step is performed during the
compilation phase and therefore incurs no runtime cost, making it entirely acceptable. For (2),
we presents the proportion of total fuzzing time (60 hours) spent on Bayesian inference for each
program in Figure 13. The proportion ranges from 0.01% to 1.52%, with an average of 0.31%. The
variance in inference overhead is in#uenced by several factors, such as the size of the derivation
graph, the execution time of the program , and the stage scheduling logic in LTGF. Overall, the
overhead introduced by Bayesian program analysis is negligible and fully acceptable in practice.

5.4 Necessity to Remove Negative Feedback
We conducted an ablation experiment to demonstrate the necessity of removing negative feedback.
We refer to the con"guration without removing negative feedback as A3/%$*!#, while all other

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:24 Yifan Zhang and Xin Zhang

� �� �� 	�
� �� ��
������������

�

��

�

��

�

�
��

��
��

��
��

��
��

��
��

�

������

��
��	��

Fig. 14. Number of bugs discovered by each fuzzer throughout the entire fuzzing process in the ablation
experiment. The discovery time of each bug is represented by its median TTE across 10 runs.

Table 5. New bugs found in the latest versions of the 24 real-world programs.

Program Version CWE CVE

ncurses 6.5-20250322 Stack-based Bu!er Over#ow CVE-2025-6141

nasm 888d9ab Stack-based Bu!er Over#ow Bug Only

swftools c6a18ab Out-of-bounds Read CVE-2025-6271

gdk-pixbuf ee5aaef0 Heap-based Bu!er Over#ow CVE-2025-7345

settings are kept the same as B%&’’(). We present the bug discovery curves over time by these
two fuzzers in Figure 14. During the "rst 15 hours, the performance of both approaches is almost
indistinguishable. This is because, at this stage, the number of seeds accumulated by the fuzzer is
still relatively small, resulting in limited changes in its capability, so removing negative feedback
has little impact. After 15 hours, as the number of accumulated seeds becomes su$cient, removing
negative feedback allows the fuzzer to refocus on reachable targets that were previously assigned
negative feedback. In contrast, without removing negative feedback, these targets will not be
prioritized again and thus cannot be discovered by the fuzzer. In the end, B%&’’() discovers 82 bugs,
while A3/%$*!# discovers only 66 bugs. The 16 undetected bugs are the consequence of failing to
remove incorrect negative feedback. Therefore, removing negative feedback can e!ectively improve
bug discovery capability and is indeed necessary. Moreover, this experimental "nding is consistent
with the conclusion of recent work [37], indicating that resetting the fuzzer state can sometimes
facilitate escaping from local minima.

5.5 New Bugs
We apply B%&’’() to fuzz the latest versions of the 24 real-world programs in our benchmark, as well
as several popular open-source projects supported by OSS-Fuzz [10]. After one week of continuous
fuzzing, we summarize the results in Table 5 and Table 6. In total, we discover 39 new bugs, all of
which have been reported to the corresponding developers. The value of the vulnerabilities we

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:25

Table 6. New bugs found in popular open-source projects supported by OSS-Fuzz.

Program Stars Commit CWE CVE

spdlog 26.7k 3335c38 Uncontrolled Resource Consumption CVE-2025-6140

poco 9.1k 530c2ef NULL Pointer Dereference CVE-2025-6375

oatpp 8.3k c9765f9 Stack-based Bu!er Over#ow CVE-2025-6566

wasm3 7.6k 79d412e Out-of-bounds Write CVE-2025-6272

wabt 7.4k a60eb26
Reachable Assertion CVE-2025-6273

Uncontrolled Resource Consumption CVE-2025-6274
Use After Free CVE-2025-6275

draco 6.8k 4e12ab2

Uncontrolled Resource Consumption Bug Only
Stack-based Bu!er Over#ow Bug Only

Out-of-bounds Read Bug Only
Out-of-bounds Read Bug Only

nokogiri 6.2k a024c! Heap-based Bu!er Over#ow CVE-2025-6490
Heap-based Bu!er Over#ow CVE-2025-6494

mruby 5.4k dd68681 Heap-based Bu!er Over#ow CVE-2025-7207

bloaty 5.1k e115514 NULL Pointer Dereference Bug Only

tarantool 3.5k 46cc98b Reachable Assertion CVE-2025-6536

libarchive 3.2k 29fd918 Heap-based Bu!er Over#ow CVE-2025-5915

tidy-html5 2.8k d08ddc2
NULL Pointer Dereference CVE-2025-6496

Reachable Assertion CVE-2025-6497
Missing Release of Memory after E!ective Lifetime CVE-2025-6498

plan9port 1.7k 9da5b44 NULL Pointer Dereference CVE-2025-7209

libucl 1.7k 3e7f023 Heap-based Bu!er Over#ow CVE-2025-6499

libyaml 1k 3e7f023 Out-of-bounds Write Bug Only

hdf5 760 17c16b6

Heap-based Bu!er Over#ow CVE-2025-6750
Heap-based Bu!er Over#ow CVE-2025-6816

Uncontrolled Resource Consumption CVE-2025-6817
Heap-based Bu!er Over#ow CVE-2025-6818

Use After Free CVE-2025-6856
Stack-based Bu!er Over#ow CVE-2025-6857
NULL Pointer Dereference CVE-2025-6858
Heap-based Bu!er Over#ow CVE-2025-7067

Missing Release of Memory after E!ective Lifetime CVE-2025-7068
Heap-based Bu!er Over#ow CVE-2025-7069

librdkafka 692 826f585 Heap-based Bu!er Over#ow Bug Only
Stack-based Bu!er Over#ow Bug Only

discovered has been recognized by the community, with 30 of them being con"rmed as CVEs. We
summarize B%&’’()’s practical impact as follows: (1) B%&’’() has discovered a large number of
vulnerabilities in popular programs, with about half of the bugs coming from GitHub repositories
with more than 3k stars, and the most popular repository having up to 26.7k stars. (2) B%&’’() has

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:26 Yifan Zhang and Xin Zhang

found numerous high-quality vulnerabilities. For each bug, we list the associated CWE (Common
Weakness Enumeration) in the table. For example, Uncontrolled Resource Consumption enables
attackers to illegitimately occupy system memory, causing other processes to crash; Stack-based
Bu!er Over#ow, Heap-based Bu!er Over#ow, and Out-of-bounds Write may allow illegal memory
writes, potentially leading to privilege escalation or sandbox escape; Out-of-bounds Read may allow
reading sensitive information from memory, resulting in information leakage. (3) Although the
programs we tested have already been extensively fuzzed by the community (i.e., the 24 real-world
programs) or have been continuously tested by OSS-Fuzz’s 24 → 7 infrastructure, B%&’’() is still
able to "nd bugs that other fuzzers cannot discover. These "ndings provide strong evidence of the
practical e!ectiveness of B%&’’() in real-world software systems.

6 Discussion
In the following, we discuss potential improvements to our approach and future research directions.
Impact of static analysis precision. Our approach adopts coarse-grained taint analysis without

checking for sanitization functions. This design choice reduces the computational overhead of static
analysis and enables our method to be applied to a wider range of programs. Notably, the logical
component of Bayesian program analysis can accommodate any static analysis based on abstract
interpretation, since the derivation process can always be represented as a derivation graph and
subsequently transformed into a Bayesian network. We choose Datalog as the formalism because
prior work in Bayesian program analysis [34] provides a systematic method for automatically
constructing a Bayesian network from a Datalog-based analysis. For analyses that do not use
Datalog, additional engineering e!ort is required to instrument the analysis execution and export
the derivations. Moreover, an interesting direction for future research is to investigate how to
select an appropriate level of analysis granularity to balance prior precision, analysis e$ciency,
and inference e$ciency, according to the speci"c characteristics of the program.
Handling fuzz blockers. Fuzz blockers [6, 9, 23, 35] refer to situations in which, when bug 𝑒

lies on the path to triggering bug 𝑠, the program error caused by triggering bug 𝑒 prevents bug
𝑠 from being triggered. Our approach cannot discover such blocked bugs, so the key question
is whether performance is degraded by repeatedly attempting to trigger these bugs. To address
this, we calculated the proportion of runs in directed fuzzing towards high-probability reachable
targets (as computed by the Bayesian program analysis) that are blocked by other unrelated bugs.
Our results show that, on average, only 2.6% of runs are a!ected in this manner. In summary,
while our approach does not attempt to solve the problem of blocking bugs, this issue does not
a!ect its performance in practice. This "nding is corroborated by our overall experimental results.
A potential solution to mitigate this problem is to patch blocking bugs, as proposed by recent
work [35]. Our approach is orthogonal to this method and can be combined with it to achieve even
better e!ectiveness.

7 Related Work
Our approach is related to research on (1) Bayesian program analysis, (2) multi-target directed
greybox fuzzing, and (3) techniques that leverage static analysis to enhance greybox fuzzing. We
summarize the related prior works below.

Bayesian program analysis. Bayesian program analysis transforms static analysis derivations into
Bayesian models and compute the probability of each alarm being true. Prior work in this area can
be broadly categorized into two directions. The "rst line of research focuses on enabling Bayesian
program analysis to generalize across diverse forms of posterior information. E"2(#([26] and
B*#2! [34] enhance alarm ranking by learning from user feedback.D)%8([11] leverages di!erences
between code versions to improve alarm ranking. D&#%B!!+$ [4] uses dynamic execution results to

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:27

re"ne alarm rankings. NESA [20] combines informal information with neural-symbolic reasoning
to produce more accurate alarm rankings. The second line of research explores how to optimize the
inference of Bayesian models for more e!ective alarm ranking. B%&(S7*$, [15] applies parameter
learning based on program syntactic information, while B*#G)%-, [47] and B%&(+R(5*#([41]
perform structural learning by selecting suitable abstraction. These works mainly aim to make
alarm rankings more accurate so developers can inspect them more easily. In contrast, B%&’’()
rede"nes the semantics in the Bayesian network to enable the prediction of whether each target is
reachable by the fuzzer, thereby successfully extending Bayesian program analysis to guide fuzzing
for fully automated bug discovery. These prior techniques are orthogonal to B%&’’(), and their
advances can be used to further improve the fuzzing capabilities of B%&’’().
Multi-target directed greybox fuzzing. Multi-target directed greybox fuzzing aims to trigger

potential bugs across multiple program locations. Prior work in this area can be broadly categorized
into two directions. The "rst direction is large-scale target-guided greybox fuzzing (LTGF), where
the target set is typically large and often consists of static analysis alarms. The goal of LTGF is
to discover previously unknown bugs. SAVIOR [5] integrates symbolic execution with fuzzing
to mutate seeds more e!ectively, combining the strengths of both techniques. B%&’’() can be
extended with the symbolic execution component from SAVIOR to explore paths that are di$cult
for fuzzers to reach. P%)7(S%# [33] leverages dynamic data-#ow analysis to estimate the distance
between inputs and multiple targets for seed prioritization. F*+,F"’’ [50] improves precision by
selecting the nearest seed for each individual target. P)!+-(.$!) [49] builds upon F*+,F"’’ and
introduces further optimizations across multiple phases, including target prioritization and stage
scheduling. By comparison, B%&’’() introduces a principled approach to target prioritization by
leveraging Bayesian program analysis, and experimental results demonstrate that it outperforms
existing methods. The second direction is critical-set directed greybox fuzzing (CDGF) [1, 14, 22, 36].
CDGF typically focuses on a small set of target locations that correspond to known bugs. This
setting is often used for e$ciently validating or re-triggering multiple known bug within the same
program, such as for regression testing or patch validation. B%&’’() can leverage techniques from
CDGF by precisely guiding the selection of a smaller critical target set, enabling faster triggering of
bugs.

Static analysis for greybox fuzzing. For directed greybox fuzzing (DGF), static analysis is primarily
used for distance computation [2, 3, 7, 16, 18, 19, 44] and pruning of unreachable states [13, 25].
B%&’’() can be integrated with these techniques to further enhance its capability for directed bug
triggering. For coverage-guided greybox fuzzing (CGF), static analysis is mainly used to guide seed
prioritization [40, 43, 45], byte scheduling [24], and dictionary construction [39]. Our experimental
results demonstrate that B%&’’() outperforms the state-of-the-art static-analysis-based CGF tool
F"#F"’’ [45], providing strong evidence that Bayesian program analysis o!ers more e!ective
guidance for fuzzers compared to conventional static analysis approaches.

8 Conclusion
We present B%&’’(), a framework that leverages Bayesian program analysis to guide large-scale
target-guided greybox fuzzing. B%&’’() constructs a Bayesian model based on the semantics of
static analysis, continuously learns from feedback during fuzzing, and computes the probability
that each target is reachable by the fuzzer to prioritize target selection. We conduct experiments
totaling over 9.86 CPU-years to evaluate the e!ectiveness of B%&’’(). B%&’’() discovered 39
previously unknown vulnerabilities in well-tested programs, 30 of which have been con"rmed as
CVEs. The results demonstrate that B%&’’() signi"cantly outperforms existing fuzzers in terms of
bug discovery capabilities.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:28 Yifan Zhang and Xin Zhang

Data-Availability Statement
Our artifact [48] includes all code, scripts, data, and statistics from our experiments. It contains the
following:

(1) Automatic reproduction of all results from our experiments.
(2) Automated transformation of the results into Figure 11, Figure 12, Figure 13, Figure 14, as

well as the complete table that contains Table 3 and Table 4.
(3) Detailed information on each newly discovered vulnerability not yet assigned a CVE, submit-

ted to developers and presented in Table 5 and Table 6.
(4) A reusability guide for applying the B%&’’() framework to other settings and extensions.

Acknowledgments
We sincerely thank the anonymous reviewers for their valuable feedback on our paper and the
anonymous artifact reviewers for their constructive suggestions. This work is supported by the
National Natural Science Foundation of China (NSFC) under Grant No. 62172017, W2411051.

References
[1] AndrewBao,Wenjia Zhao, YanhaoWang, Yueqiang Cheng, StephenMcCamant, and Pen-Chung Yew. 2025. FromAlarms

to Real Bugs: Multi-target Multi-step Directed Greybox Fuzzing for Static Analysis Result Veri"cation. In 34th USENIX
Security Symposium, USENIX Security 2025, Seattle, WA, USA, August 13-15, 2025, Lujo Bauer and Giancarlo Pellegrino
(Eds.). USENIX Association, 6977–6997. https://www.usenix.org/conference/usenixsecurity25/presentation/bao-
andrew

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM,
2329–2344. doi:10.1145/3133956.3134020

[3] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu, and Yang Liu. 2018. Hawkeye:
Towards a Desired Directed Grey-box Fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang (Eds.). ACM, 2095–2108. doi:10.1145/3243734.3243849

[4] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting static analysis accuracy with instrumented
test executions. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha
Chechik, and Massimiliano Di Penta (Eds.). ACM, 1154–1165. doi:10.1145/3468264.3468626

[5] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang, Tao Wei, and Long Lu. 2020. SAVIOR:
Towards Bug-Driven Hybrid Testing. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 1580–1596. doi:10.1109/SP40000.2020.00002

[6] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs. In 18th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 131–142. doi:10.1109/
MSR52588.2021.00026

[7] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. Windranger: A Directed Greybox Fuzzer driven by Deviation
Basic Blocks. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2440–2451. doi:10.1145/3510003.3510197

[8] Andrea Fioraldi, Dominik Christian Maier, Heiko Eißfeldt, andMarc Heuse. 2020. AFL++ : Combining Incremental Steps
of Fuzzing Research. In 14th USENIX Workshop on O"ensive Technologies, WOOT 2020, August 11, 2020, Yuval Yarom
and Sarah Zennou (Eds.). USENIX Association. https://www.usenix.org/conference/woot20/presentation/"oraldi

[9] Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray, and Benjamin I. P. Rubinstein. 2023. Beyond
the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Report). In Proceedings of the 2nd Interna-
tional Fuzzing Workshop, FUZZING 2023, Seattle, WA, USA, 17 July 2023, Marcel Böhme, Yannic Noller, Baishakhi Ray,
and László Szekeres (Eds.). ACM, 47–55. doi:10.1145/3605157.3605177

[10] Google. 2016. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://google.github.io/oss-fuzz/.
[11] Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019. Continuously reasoning about programs using

di!erential Bayesian inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

https://www.usenix.org/conference/usenixsecurity25/presentation/bao-andrew
https://www.usenix.org/conference/usenixsecurity25/presentation/bao-andrew
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/MSR52588.2021.00026
https://doi.org/10.1109/MSR52588.2021.00026
https://doi.org/10.1145/3510003.3510197
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/3605157.3605177
https://google.github.io/oss-fuzz/

Fuzzing Guided by Bayesian Program Analysis 17:29

and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.).
ACM, 561–575. doi:10.1145/3314221.3314616

[12] Myles Hollander, Douglas A Wolfe, and Eric Chicken. 2013. Nonparametric statistical methods. John Wiley & Sons.
doi:10.1002/9781119196037

[13] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2022. BEACON: Directed
Grey-Box Fuzzing with Provable Path Pruning. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022. IEEE, 36–50. doi:10.1109/SP46214.2022.9833751

[14] Heqing Huang, Peisen Yao, Hung-Chun Chiu, Yiyuan Guo, and Charles Zhang. 2024. Titan : E$cient Multi-target
Directed Greybox Fuzzing. In IEEE Symposium on Security and Privacy, SP 2024, San Francisco, CA, USA, May 19-23,
2024. IEEE, 1849–1864. doi:10.1109/SP54263.2024.00059

[15] Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning Probabilistic Models for Static Analysis Alarms.
In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 1282–1293. doi:10.1145/3510003.3510098

[16] Tae Eun Kim, Jaeseung Choi, Kihong Heo, and Sang Kil Cha. 2023. DAFL: Directed Grey-box Fuzzing guided by
Data Dependency. In 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023,
Joseph A. Calandrino and Carmela Troncoso (Eds.). USENIX Association, 4931–4948. https://www.usenix.org/
conference/usenixsecurity23/presentation/kim-tae-eun

[17] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.
https://dl.acm.org/doi/10.5555/1795555

[18] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided Directed Greybox Fuzzing. In 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael D. Bailey and Rachel Greenstadt (Eds.).
USENIX Association, 3559–3576. https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu

[19] Penghui Li, Wei Meng, and Chao Zhang. 2024. SDFuzz: Target States Driven Directed Fuzzing. In 33rd USENIX Security
Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024, Davide Balzarotti and Wenyuan Xu (Eds.).
USENIX Association. https://www.usenix.org/conference/usenixsecurity24/presentation/li-penghui

[20] Tianchi Li and Xin Zhang. 2025. Combining Formal and Informal Information in Bayesian Program Analysis via Soft
Evidences. Proc. ACM Program. Lang. 9, OOPSLA1, Article 143 (April 2025), 28 pages. doi:10.1145/3720508

[21] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem
Beyah, Peng Cheng, Kangjie Lu, and Ting Wang. 2021. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform
for Evaluating Fuzzers. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael D. Bailey
and Rachel Greenstadt (Eds.). USENIX Association, 2777–2794. https://www.usenix.org/conference/usenixsecurity21/
presentation/li-yuwei

[22] Hongliang Liang, Xinglin Yu, Xianglin Cheng, Jie Liu, and Jin Li. 2024. Multiple Targets Directed Greybox Fuzzing.
IEEE Trans. Dependable Secur. Comput. 21, 1 (2024), 325–339. doi:10.1109/TDSC.2023.3253120

[23] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018. Fuzz testing in practice: Obstacles and
solutions. In 25th International Conference on Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso,
Italy, March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE Computer Society,
562–566. doi:10.1109/SANER.2018.8330260

[24] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu, Zhe Liu, and Jiaguang Sun. 2022. PATA:
Fuzzing with Path Aware Taint Analysis. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022. IEEE, 1–17. doi:10.1109/SP46214.2022.9833594

[25] Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: E$cient Directed Fuzzing with Selective Path Exploration.
In 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023. IEEE, 2693–2707.
doi:10.1109/SP46215.2023.10179296

[26] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A user-guided approach to program analysis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August
30 - September 4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 462–473. doi:10.1145/
2786805.2786851

[27] MITRE. 2017. CVE-2017-14409. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14409.
[28] MITRE. 2017. CVE-2017-14410. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14410.
[29] MITRE. 2022. CVE-2022-27941. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27941.
[30] MITRE. 2022. CVE-2022-27942. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27942.
[31] Joris M. Mooij. 2010. libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical

Models. Journal of Machine Learning Research 11 (Aug. 2010), 2169–2173. http://www.jmlr.org/papers/volume11/
mooij10a/mooij10a.pdf

[32] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy Belief Propagation for Approximate Inference: An
Empirical Study. In UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty in Arti!cial Intelligence, Stockholm,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

https://doi.org/10.1145/3314221.3314616
https://doi.org/10.1002/9781119196037
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/SP54263.2024.00059
https://doi.org/10.1145/3510003.3510098
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-tae-eun
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-tae-eun
https://dl.acm.org/doi/10.5555/1795555
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity24/presentation/li-penghui
https://doi.org/10.1145/3720508
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://doi.org/10.1109/TDSC.2023.3253120
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/SP46215.2023.10179296
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/2786805.2786851
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14409
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14410
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27941
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27942
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf

17:30 Yifan Zhang and Xin Zhang

Sweden, July 30 - August 1, 1999, Kathryn B. Laskey and Henri Prade (Eds.). Morgan Kaufmann, 467–475. https:
//dl.acm.org/doi/10.5555/2073796.2073849

[33] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giu!rida. 2020. ParmeSan: Sanitizer-guided Greybox
Fuzzing. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska
Roesner (Eds.). USENIX Association, 2289–2306. https://www.usenix.org/conference/usenixsecurity20/presentation/
osterlund

[34] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning
using Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Je!rey S. Foster and Dan Grossman (Eds.). ACM,
722–735. doi:10.1145/3192366.3192417

[35] Arvind S. Raj, Wil Gibbs, Fangzhou Dong, Jayakrishna Menon Vadayath, Michael Tompkins, Steven Wirsz, Yibo Liu,
Zhenghao Hu, Chang Zhu, Gokulkrishna Praveen Menon, Brendan Dolan-Gavitt, Adam Doupé, Ruoyu Wang, Yan
Shoshitaishvili, and Ti!any Bao. 2024. Fuzz to the Future: Uncovering Occluded Future Vulnerabilities via Robust
Fuzzing. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS 2024,
Salt Lake City, UT, USA, October 14-18, 2024, Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie (Eds.). ACM,
3719–3733. doi:10.1145/3658644.3690278

[36] Huanyao Rong, Wei You, Xiaofeng Wang, and Tianhao Mao. 2024. Toward Unbiased Multiple-Target Fuzzing with
Path Diversity. In 33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024,
Davide Balzarotti and Wenyuan Xu (Eds.). USENIX Association. https://www.usenix.org/conference/usenixsecurity24/
presentation/rong

[37] Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz. 2025. Novelty Not Found:
Exploring Input Shadowing in Fuzzing through Adaptive Fuzzer Restarts. ACM Trans. Softw. Eng. Methodol. 34, 3
(2025), 85:1–85:32. doi:10.1145/3712186

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A
Fast Address Sanity Checker. In Proceedings of the 2012 USENIX Annual Technical Conference, USENIX ATC 2012,
Boston, MA, USA, June 13-15, 2012, Gernot Heiser and Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https:
//www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

[39] Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian Yamaguchi, Konrad Rieck, Stefan
Schmid, Jean-Pierre Seifert, and Anja Feldmann. 2017. Static Program Analysis as a Fuzzing Aid. In Research in Attacks,
Intrusions, and Defenses - 20th International Symposium, RAID 2017, Atlanta, GA, USA, September 18-20, 2017, Proceedings
(Lecture Notes in Computer Science, Vol. 10453), Marc Dacier, Michael D. Bailey, Michalis Polychronakis, and Manos
Antonakakis (Eds.). Springer, 26–47. doi:10.1007/978-3-319-66332-6_2

[40] Dongdong She, Abhishek Shah, and Suman Jana. 2022. E!ective Seed Scheduling for Fuzzing with Graph Centrality
Analysis. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE,
2194–2211. doi:10.1109/SP46214.2022.9833761

[41] Yuanfeng Shi, Yifan Zhang, and Xin Zhang. 2025. On Abstraction Re"nement for Bayesian Program Analysis. Proc.
ACM Program. Lang. 9, OOPSLA2 (2025), 3232–3258. doi:10.1145/3763166

[42] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-#ow analysis in LLVM. In Proceedings of the
25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, Ayal Zaks and
Manuel V. Hermenegildo (Eds.). ACM, 265–266. doi:10.1145/2892208.2892235

[43] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei Sui. 2020.
Typestate-guided fuzzer for discovering use-after-free vulnerabilities. In ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
999–1010. doi:10.1145/3377811.3380386

[44] Valentin Wüstholz and Maria Christakis. 2020. Targeted greybox fuzzing with static lookahead analysis. In ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and
Doo-Hwan Bae (Eds.). ACM, 789–800. doi:10.1145/3377811.3380388

[45] Mingxi Ye, Yuhong Nan, Hong-Ning Dai, Shuo Yang, Xiapu Luo, and Zibin Zheng. 2024. FunFuzz: A Function-Oriented
Fuzzer for Smart Contract Vulnerability Detection with High E!ectiveness and E$ciency. ACM Trans. Softw. Eng.
Methodol. 33, 7 (2024), 191:1–191:20. doi:10.1145/3674725

[46] Micha% Zalewski. 2013. American Fuzzy Lop. https://lcamtuf.coredump.cx/a#/.
[47] Yifan Zhang, Yuanfeng Shi, and Xin Zhang. 2024. Learning Abstraction Selection for Bayesian Program Analysis. Proc.

ACM Program. Lang. 8, OOPSLA1 (2024), 954–982. doi:10.1145/3649845
[48] Yifan Zhang and Xin Zhang. 2025. Fuzzing Guided by Bayesian Program Analysis (Paper Artifact). doi:10.5281/zenodo.

17784906
[49] Zhijie Zhang, Liwei Chen, Haolai Wei, Gang Shi, and Dan Meng. 2024. Prospector: Boosting Directed Greybox

Fuzzing for Large-Scale Target Sets with Iterative Prioritization. In Proceedings of the 33rd ACM SIGSOFT International

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

https://dl.acm.org/doi/10.5555/2073796.2073849
https://dl.acm.org/doi/10.5555/2073796.2073849
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://doi.org/10.1145/3192366.3192417
https://doi.org/10.1145/3658644.3690278
https://www.usenix.org/conference/usenixsecurity24/presentation/rong
https://www.usenix.org/conference/usenixsecurity24/presentation/rong
https://doi.org/10.1145/3712186
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1007/978-3-319-66332-6_2
https://doi.org/10.1109/SP46214.2022.9833761
https://doi.org/10.1145/3763166
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3674725
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3649845
https://doi.org/10.5281/zenodo.17784906
https://doi.org/10.5281/zenodo.17784906

Fuzzing Guided by Bayesian Program Analysis 17:31

Symposium on Software Testing and Analysis, ISSTA 2024, Vienna, Austria, September 16-20, 2024, Maria Christakis and
Michael Pradel (Eds.). ACM, 1351–1363. doi:10.1145/3650212.3680365

[50] Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang, Chunjie Cao, Yuqing Zhang, Flavio To!alini, and
Mathias Payer. 2023. FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets. In 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and Carmela Troncoso (Eds.).
USENIX Association, 1343–1360. https://www.usenix.org/conference/usenixsecurity23/presentation/zheng

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

https://doi.org/10.1145/3650212.3680365
https://www.usenix.org/conference/usenixsecurity23/presentation/zheng

17:32 Yifan Zhang and Xin Zhang

A The Complete Table Containing Table 3 and Table 4

Table 7. Median TTE of each fuzzer over 10 runs on 24 real-world programs. N.A. (𝑃) indicates that the
median TTE is +△, and the corresponding fuzzer triggered the bug in 𝑃 out of 10 runs. For each bug, the
best-performing fuzzer is highlighted in bold. In the row Performance vs. B!"##$%, the value 𝑅/𝑆 indicates
that B!"##$% outperforms the compared fuzzer on 𝑅 bugs, while the compared fuzzer performs be#er on 𝑆
bugs. This count is used to compute the p-value from the sign test, as shown in the next row.

Program Bug ID B’/""&+ P+-01&(,-+ F#0)F!"" F!$F!"" AFL++

lou_checktable
CVE-2018-11684 N.A. (1) 12h40m N.A. (1) N.A. (0) N.A. (0)
liblouis-java-issue-10 N.A. (0) 22h59m N.A. (0) N.A. (0) N.A. (0)

gif2tga

ngi#ib-issue-11 2s 2s 2s 2s 2s
ngi#ib-issue-1 13s 13s 13s 14s 14s
CVE-2019-20219 14s 14s 14s 14s 14s
ngi#ib-issue-4 14s 14s 14s 14s 15s

lame
CVE-2015-9100 37s 39s 44s 31s 28s
CVE-2017-11720 43m59s 44m47s 47m6s 29m9s 27m
CVE-2017-15046 44h16m 52h49m N.A. (3) 32h31m N.A. (3)

jhead

CVE-2020-6624 2s 2s 2s 1s 2s
jhead-unknown-1 3s 3s 3s 3s 4s
CVE-2019-19035 3s 4s 4s 3s 11s
jhead-issue-53 20s 20s 20s N.A. (1) N.A. (1)
jhead-issue-8 15m18s 15m28s 19m18s N.A. (2) N.A. (1)

pdftotext
xpdf-42460 N.A. (0) N.A. (1) N.A. (1) N.A. (2) N.A. (0)
CVE-2019-9877 N.A. (2) N.A. (1) N.A. (0) N.A. (2) N.A. (1)

objdump

binutils-issue-22047 28m22s 3m9s 3m7s 2m36s 56m8s
binutils-issue-22192 30m8s 4m47s 4m50s 3m59s 1h5m
objdump-unknown-1 40m50s 14m42s 14m53s 11m58s 1h25m
binutils-issue-21432 2h38m 30m39s 31m2s 24m44s 1h30m
binutils-issue-21151 4h2m 1h52m 2h5m 1h56m 5h13m
binutils-issue-4746 N.A. (4) N.A. (4) N.A. (0) 12h30m 10h1m
CVE-2018-7568 N.A. (4) 50h9m 43h51m N.A. (3) N.A. (3)
objdump-unknown-2 N.A. (2) N.A. (0) N.A. (4) N.A. (1) N.A. (3)
binutils-issue-22187 N.A. (1) N.A. (2) N.A. (1) N.A. (0) N.A. (1)
binutils-issue-22893 N.A. (4) N.A. (3) N.A. (4) N.A. (1) N.A. (0)
objdump-unknown-3 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
objdump-unknown-4 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (1)
CVE-2017-9746 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)

sqlite3 sqlite3-issue-adb17d6 N.A. (5) 20h5m 28h41m 11h3m N.A. (5)

wav2swf
CVE-2017-11099 10s 16s 14s 17s 13s
wav2swf-unknown-1 1m5s 41m52s 41m30s 1h31m 59m7s

cflow
CVE-2019-16165 10h25m 5h53m 23h1m 4h43m 4h20m
CVE-2020-23856 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (2)

tiffsplit

CVE-2018-10801 2m43s 2m28s 4m23s 58s 2m19s
libti!-issue-2585 1m34s 1m19s 2m51s 47s 1m14s
CVE-2016-9273 4h49m 6h8m 7h42m 49m44s 44m45s
CVE-2022-0562 54h14m 13h39m 36h15m N.A. (2) N.A. (3)
CVE-2015-7554 11m39s 17m39s 13m47s 11m28s 17m53s
CVE-2014-8127 4h55m 46m24s 5h44m 32m25s 2h30m
libti!-issue-2243 19m10s 1h18m 1h44m 57m14s 2h21m
libti!-issue-2678 3h14m 3h30m 2h4m 8h55m 31h39m

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:33

tiffsplit

libti!-unknown-4 1h42m 2h21m 1h30m 9h52m 37h53m
libti!-issue-1936 2h21m 18h10m 7h15m 13h59m 43h53m
libti!-unknown-2 2h23m 8h3m 1h35m 14h8m N.A. (3)
libti!-issue-2242 N.A. (4) N.A. (5) N.A. (3) 51h8m N.A. (1)
ti!split-unknown-1 25h37m N.A. (4) 30h33m 8h25m N.A. (5)
libti!-unknown-6 33h25m N.A. (4) N.A. (5) N.A. (5) N.A. (4)
libti!-unknown-5 N.A. (5) N.A. (1) N.A. (2) N.A. (3) N.A. (1)
libti!-issue-307-3 N.A. (3) N.A. (3) N.A. (0) 44h28m N.A. (0)
libti!-unknown-3 N.A. (1) N.A. (0) N.A. (2) N.A. (0) N.A. (0)
CVE-2017-11613 N.A. (0) N.A. (1) N.A. (1) N.A. (0) N.A. (0)
ti!split-unknown-2 N.A. (1) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
ti!split-unknown-3 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)

gdk-pixbuf-pixdata

CVE-2016-6352 5h22m 5h10m 7h33m N.A. (0) 4h4m
gdk-unknown-6 N.A. (4) N.A. (1) 24h39m N.A. (0) N.A. (0)
gdk-unknown-4 14h52m 34h3m 1h45m 10s N.A. (2)
gdk-unknown-2 15h1m 56h29m 1h53m 8m22s N.A. (2)
gdk-unknown-1 16h16m 37h32m 11h7m N.A. (0) N.A. (2)
CVE-2015-7674 N.A. (2) N.A. (2) N.A. (3) N.A. (0) N.A. (0)
gdk-unknown-3 N.A. (1) N.A. (0) N.A. (4) N.A. (0) N.A. (0)
CVE-2015-7673 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (1)
CVE-2015-7217 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (1)

MP4Box

gpac-issue-1333 1m23s 1m17s 1m19s 1m32s 1m14s
gpac-issue-1661 5m20s 5m35s 5m47s 5m24s 5m10s
gpac-issue-1099 4h23m 11h54m 3h51m 4h11m 6h38m
gpac-issue-1097 N.A. (3) N.A. (0) N.A. (4) N.A. (1) N.A. (1)
CVE-2018-7752 N.A. (5) N.A. (3) N.A. (5) 17h14m 29h28m
gpac-unknown-101 39h23m N.A. (4) 57h12m N.A. (5) N.A. (3)
CVE-2018-13005 45h52m N.A. (1) N.A. (3) N.A. (1) N.A. (0)
CVE-2018-13006 N.A. (2) N.A. (0) N.A. (3) N.A. (0) N.A. (0)
gpac-unknown-1 N.A. (1) N.A. (4) N.A. (4) N.A. (1) N.A. (3)
gpac-issue-1096 N.A. (2) N.A. (3) N.A. (0) N.A. (1) N.A. (1)
MP4Box-unknown-1 N.A. (0) N.A. (1) N.A. (0) N.A. (1) N.A. (0)
gpac-issue-1250 N.A. (2) N.A. (5) N.A. (0) N.A. (0) N.A. (1)
gpac-issue-1446 N.A. (0) 33h26m N.A. (0) N.A. (0) N.A. (1)
gpac-issue-1445 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
CVE-2019-20630 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
gpac-issue-1422 N.A. (0) 24h40m N.A. (0) N.A. (0) N.A. (0)
gpac-unknown-102 N.A. (0) N.A. (1) N.A. (0) N.A. (3) N.A. (0)
gpac-unknown-2 N.A. (0) N.A. (3) N.A. (0) N.A. (0) N.A. (0)
CVE-2018-21015 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
CVE-2019-20629 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
MP4Box-unknown-2 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)

nasm
CVE-2018-8883 6m35s 6m12s 8m2s 6m24s 7m20s
CVE-2018-8882 20h25m N.A. (5) N.A. (3) N.A. (2) N.A. (1)
CVE-2018-16517 45h44m N.A. (3) N.A. (1) N.A. (1) N.A. (1)

mujs

CVE-2016-7564 2m53s 13m25s 4m7s 5m1s 6m58s
CVE-2022-30974 20h40m 9h45m 20h47m N.A. (0) N.A. (0)
mujs-unknown-3 28h8m 9h54m 20h54m N.A. (0) N.A. (0)
CVE-2018-6191 N.A. (1) N.A. (1) N.A. (3) N.A. (0) N.A. (0)
mujs-unknown-1 38h23m 17h55m 28h60m N.A. (0) N.A. (0)
mujs-unknown-4 N.A. (1) N.A. (4) N.A. (1) N.A. (1) N.A. (0)
mujs-unknown-2 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)

tcpdump
17fd73dd 2h12m 1h4m 1h49m 3h59m 2h55m
91161b82 2h16m 1h59m 1h41m 8h50m 2h59m

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:34 Yifan Zhang and Xin Zhang

tcpdump

f5230e7c 23h31m N.A. (3) 19h44m 6h49m 8h50m
a7848578 23h31m N.A. (3) 19h44m 9h21m 8h18m
64e09de7 N.A. (5) N.A. (3) N.A. (5) 43h35m 12h46m
7bf069c2 N.A. (5) 38h24m N.A. (4) 51h24m 5h14m
d3a64d83 N.A. (1) N.A. (1) N.A. (3) N.A. (4) N.A. (5)
9!dbd32 47h26m N.A. (2) N.A. (5) N.A. (0) N.A. (2)
97d372ef 2h4m 41m23s 34m15s N.A. (5) 28h33m
d6913f7e 3h32m 6h22m 2h14m 25h4m 27h43m
0db4dcaf 3h21m 5h5m 4h57m 10h31m 6h49m
b13ef341 42h35m N.A. (5) N.A. (4) N.A. (1) 28h24m
f70d3198 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (2)
c4744fc2 4h13m 4h7m 8h51m N.A. (4) N.A. (4)
a3319d57 34h10m 23h24m 44h9m 10h27m 25h26m
515bf64e 20h57m N.A. (0) N.A. (3) N.A. (3) N.A. (3)
64f63920 40h13m N.A. (2) N.A. (0) N.A. (1) N.A. (2)
tcpdump-unknown-1 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
6bc44295 38h41m N.A. (4) N.A. (3) N.A. (3) N.A. (2)
980bc248 11h5m 33h43m 24h59m N.A. (5) 26h25m
0d2332ab 19h10m N.A. (1) N.A. (4) N.A. (1) N.A. (2)
5356a9ea N.A. (4) N.A. (1) N.A. (1) N.A. (1) N.A. (1)
a7be3fdb 34h17m N.A. (3) N.A. (2) N.A. (0) N.A. (4)
f74743df N.A. (4) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
39988398 N.A. (3) N.A. (3) N.A. (2) N.A. (1) N.A. (2)
a4a99cec N.A. (1) N.A. (1) N.A. (0) N.A. (1) N.A. (0)
b3258565 38h10m N.A. (1) N.A. (4) N.A. (0) N.A. (0)
9845aa18 N.A. (2) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
71d9d09c N.A. (2) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
tcpdump-unknown-2 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
ec9d8470 N.A. (1) N.A. (3) N.A. (2) N.A. (0) N.A. (1)
3cb7e038 N.A. (2) N.A. (5) N.A. (1) N.A. (0) N.A. (0)
79d80f09 N.A. (1) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
tcpdump-unknown-3 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
e01c9bf7 N.A. (5) N.A. (2) N.A. (5) N.A. (4) N.A. (2)
55c0e680 N.A. (3) N.A. (1) N.A. (3) N.A. (1) N.A. (0)
7dcbc13c N.A. (0) N.A. (1) N.A. (1) N.A. (1) N.A. (0)
1!d7948 N.A. (3) N.A. (4) N.A. (5) N.A. (2) N.A. (3)
8fb9f546 N.A. (4) N.A. (4) 23h22m N.A. (3) N.A. (2)
b56aab38 N.A. (1) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
378ac56f N.A. (1) N.A. (2) N.A. (0) N.A. (1) N.A. (0)
e347505a N.A. (0) N.A. (1) N.A. (2) N.A. (0) N.A. (0)
5cace728 N.A. (5) N.A. (4) N.A. (4) N.A. (2) 44h1m
4ef024c8 N.A. (0) N.A. (2) N.A. (0) N.A. (1) N.A. (1)
5d214e36 N.A. (3) N.A. (1) N.A. (0) N.A. (2) N.A. (1)
tcpdump-unknown-4 N.A. (0) N.A. (0) N.A. (1) N.A. (2) N.A. (1)
cb6a1aca N.A. (2) N.A. (0) N.A. (4) N.A. (0) N.A. (0)
71968ea3 N.A. (3) N.A. (1) N.A. (2) N.A. (0) N.A. (0)
tcpdump-unknown-5 N.A. (3) N.A. (0) N.A. (3) N.A. (0) N.A. (2)
7037592e N.A. (0) N.A. (0) N.A. (3) N.A. (0) N.A. (0)
d7505276 N.A. (2) N.A. (0) N.A. (3) N.A. (0) N.A. (0)
tcpdump-unknown-6 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
3f069d0e 17h6m N.A. (2) N.A. (3) N.A. (2) N.A. (1)
d08!6a0 N.A. (1) N.A. (0) N.A. (3) N.A. (1) N.A. (0)
acfaf253 N.A. (2) N.A. (1) N.A. (1) N.A. (1) N.A. (0)
tcpdump-unknown-7 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
e8a77162 N.A. (0) N.A. (0) N.A. (1) N.A. (2) N.A. (2)
237efcf5 N.A. (0) N.A. (0) N.A. (1) N.A. (1) N.A. (0)
d1d4404d N.A. (2) N.A. (3) N.A. (1) N.A. (1) N.A. (0)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

Fuzzing Guided by Bayesian Program Analysis 17:35

tcpdump

tcpdump-unknown-8 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
da946bdc N.A. (2) N.A. (0) N.A. (2) N.A. (0) N.A. (0)
ecf6e822 N.A. (2) N.A. (1) N.A. (3) N.A. (0) N.A. (1)
28f61002 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
09b11852 N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
d9dbb118 N.A. (1) N.A. (0) N.A. (0) N.A. (1) N.A. (3)
tcpdump-unknown-9 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (3)
85350ac3 N.A. (2) N.A. (1) N.A. (2) N.A. (0) N.A. (0)
be4c2d85 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
7914ead4 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
45d9c5bb N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
tcpdump-unknown-10 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
e32482c5 N.A. (1) N.A. (0) N.A. (1) N.A. (0) N.A. (1)
69ead2a0 N.A. (1) N.A. (1) N.A. (0) N.A. (0) N.A. (2)
tcpdump-unknown-11 N.A. (2) N.A. (0) N.A. (1) N.A. (1) N.A. (0)
tcpdump-unknown-12 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
tcpdump-unknown-13 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
e57b260b N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (3)
e4371fa1 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
tcpdump-unknown-14 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
72ca42c7 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
0d838a84 N.A. (2) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
28171746 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
tcpdump-unknown-15 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (1)
909fb307 N.A. (1) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
3!5f3bd N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (0)
96480ab9 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
tcpdump-unknown-16 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
b4e5a87b N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)

jq jq-unknown-1 53m49s 1h32m 1h41m 1h47m 1h36m

tic

CVE-2017-13730 15h11m 21h41m 36h23m 23h2m 20h3m
tic-unknown-3 32h4m N.A. (4) 29h17m N.A. (4) N.A. (5)
CVE-2017-11113 N.A. (1) N.A. (0) N.A. (3) N.A. (3) N.A. (0)
tic-unknown-1 N.A. (0) N.A. (0) N.A. (2) N.A. (1) N.A. (0)
tic-unknown-2 N.A. (0) N.A. (0) N.A. (1) N.A. (0) N.A. (0)
tic-unknown-4 N.A. (0) N.A. (0) N.A. (0) N.A. (1) N.A. (0)

exiv2

CVE-2018-10780 37h47m 35h59m N.A. (5) 41h4m 33h45m
CVE-2018-9305 17h25m 9h55m 14h24m 17h19m 19h27m
CVE-2017-17723 17h31m 7h54m 12h22m 15h23m 21h30m
exiv-issue-211 40h27m 8h36m 15h8m 22h34m 31h47m
CVE-2017-14861 52h56m 45h52m N.A. (3) N.A. (0) N.A. (0)
CVE-2017-14858 N.A. (1) N.A. (0) N.A. (0) N.A. (2) N.A. (0)
CVE-2017-1000127 N.A. (0) N.A. (0) N.A. (1) N.A. (2) N.A. (0)

mp3gain

CVE-2017-14409 4m16s 7m4s 56m2s 10m24s 11m16s
CVE-2017-14410 6m13s 8m52s 56m41s 10m40s 11m51s
CVE-2017-14407 6m32s 7m56s 56m7s 10m30s 11m16s
CVE-2018-10777 N.A. (1) N.A. (1) N.A. (1) N.A. (2) N.A. (5)
mp3gain-unknown-2 N.A. (2) N.A. (3) N.A. (2) N.A. (3) N.A. (0)
CVE-2019-18359 N.A. (1) N.A. (2) N.A. (2) N.A. (3) N.A. (2)

flvmeta
CVE-2023-36243 2s 2s 2s 2s 2s
#vmeta-issue-14 20m46s 26m41s 22m17s 15m55s 16m8s

tcpprep
CVE-2022-27942 N.A. (4) N.A. (1) N.A. (2) N.A. (1) N.A. (2)
CVE-2022-27941 39h36m N.A. (5) N.A. (5) N.A. (4) N.A. (1)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

17:36 Yifan Zhang and Xin Zhang

Performance vs. B’/""&+ 101/66 94/70 109/61 123/43
P-value in the sign test 0.004 0.036 1.4 → 10⇓4 2 → 10⇓10

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 17. Publication date: January 2026.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 A Taint Analysis for Detecting Memory Errors
	2.2 Semantics-Aware and Fine-Grained Fuzzing Guidance via Bayesian Program Analysis
	2.3 Adaptive Fuzzing Guidance via Bayesian Program Analysis

	3 The Reachable Fuzzing Targets Problem and Our Solution
	3.1 Reachable Fuzzing Targets Problem
	3.2 Datalog-Based Program Analysis
	3.3 Bayesian Program Analysis for Reachable Fuzzing Targets Problem

	4 The Bayzzer Framework
	4.1 Overall Workflow
	4.2 Target Prioritization
	4.3 Processing Fuzzer Feedback

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness
	5.3 Overhead of Bayesian Program Analysis
	5.4 Necessity to Remove Negative Feedback
	5.5 New Bugs

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A The Complete Table Containing Table 3 and Table 4

