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We propose a learning-based approach to select abstractions for Bayesian program analysis. Bayesian program

analysis converts a program analysis into a Bayesian model by attaching probabilities to analysis rules. It

computes probabilities of analysis results and can update them by learning from user feedback, test runs,

and other information. Its abstraction heavily affects how well it learns from such information. There exists

a long line of works in selecting abstractions for conventional program analysis but they are not effective

for Bayesian program analysis. This is because they do not optimize for generalization ability. We propose a

data-driven framework to solve this problem by learning from labeled programs. Starting from an abstraction,

it decides how to change the abstraction based on analysis derivations. To be general, it considers graph

properties of analysis derivations; to be effective, it considers the derivations before and after changing the

abstraction. We demonstrate the effectiveness of our approach using a datarace analysis and a thread-escape

analysis.
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1 INTRODUCTION

Abstract-interpretation-based program analyses [Cousot 1996] typically make over-approximations

and are often expressed in logical rules. This can lead to a large number of false alarms in their

results, which has a great negative impact on users’ experience. Recently, a new paradigm which

converts conventional analyses into Bayesian models was proposed to address this problem [Mangal

et al. 2015]. We refer to it as Bayesian program analysis in the paper. In this paradigm, probabilities

are attached to analysis rules to quantify their degrees of approximation. The generated reports

also come with probabilities which are used to rank them. As a result, the analysis becomes a

Bayesian model and can improve its results by learning from various posterior information. Such
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information can come from user feedback [Mangal et al. 2015; Raghothaman et al. 2018], older

versions of the program [Heo et al. 2019b], and test runs [Chen et al. 2021].

It is well-known that the choice of abstraction is crucial in balancing the trade-off between

precision and scalability of conventional program analysis. The same problem applies to Bayesian

program analysis. However, since a Bayesian program analysis is also a learning system, the choice

of abstraction additionally affects how well the analysis generalizes from posterior information.

Using a too fine abstraction may prevent posterior information from propagating to relevant

analysis results effectively. On the other hand, using a too coarse abstraction may cause posterior

information to propagate to irrelevant analysis results falsely. Since posterior information like user

labels can be expensive to obtain, often choosing an abstraction that is optimized for generalization

is more important than optimizing for precision and scalability. In other words, we want to choose

an abstraction that can produce good alarm rankings with given amounts of posterior information.

In this paper, we aim to address such a challenge. Concretely, taking learning from user feedback

as an example, our goal is to optimize the quality of the alarm ranking with the same amount

of user feedback. However, we face two major challenges to solve this problem: (1) Effectiveness.

Although there is a long line of works [Bielik et al. 2017; Grigore and Yang 2016; Hassanshahi et al.

2017; He et al. 2020; Heo et al. 2016, 2019a, 2017; Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022;

Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Li et al. 2022, 2018a,b, 2020; Liang and Naik

2011; Liang et al. 2011; Lu and Xue 2019; Oh et al. 2014, 2015; Peleg et al. 2016; Singh et al. 2018;

Smaragdakis et al. 2014; Tan et al. 2021, 2016, 2017; Wei and Ryder 2015; Zhang et al. 2014, 2013]

on how to select adequate abstractions for conventional analysis, they cannot apply to the setting

of Bayesian program analysis. They typically rely on a key assumption: given infinite resources,

the finer the abstraction is, the better the analysis result is. However, such an assumption breaks

due to the problem of generalizing posterior information. (2) Generality. While it is possible to

develop effective solutions for particular analysis instances, our goal is to develop a methodology

that works well for a wide range of Bayesian analyses.

To address these two challenges, we propose a data-driven approach, BinGraph, which selects

program abstractions based on general characteristics of analysis derivations. For a specific program

analysis, given a set of training programs whose true alarms are given, BinGraph identifies ab-

stractions that are optimal for generalization and tries to learn a strategy to select such abstractions

based on analysis derivation characteristics. Then given a new program to analyze, BinGraph

first runs the analysis with a certain abstraction (typically the coarsest). By observing the analysis

derivation, it decides how to modify the analysis abstraction. Compared to existing data-driven

approaches for conventional analyses [Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022; Jeong et al.

2017; Oh et al. 2015], BinGraph also considers the analysis derivation after applying a candidate

abstraction modification to maximize effectiveness. In this way, our approach can be more accurate

in predicting the effect of using a certain abstraction. Our evaluation shows such a learning ap-

proach based on changes in analysis derivations incurred by alternating the abstraction is effective

in optimizing for generalization. In terms of the generality challenge, the features that BinGraph

considers are graph properties of the derivations which are analysis-agnostic. As long as we can

extract derivations graphs of a given analysis, BinGraph can apply. This is true for all existing

Bayesian program analyses as they rely on derivation graphs to perform probabilistic inference.

We have implemented BinGraph and evaluated it on the Bayesian program analysis framework

Bingo [Raghothaman et al. 2018] using two representative analyses: a datarace analysis with 4#

possible abstractions and a thread-escape analysis with 2# possible abstractions on a suite of 13

Java programs of size 55-529 KLOC, where # is the number of object allocation statements in both

analyses. We compare BinGraph to three baselines: the coarsest abstraction Base-C, the most

precise abstraction Base-P, and Base-R, which is a abstraction with randomly selected granularity.
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1 public class Thread1 extends Thread{

2 public static T1 global1;

3 public static T5 global2;

4 public void run(){

5 Scanner s = new Scanner(System.in);

6 switch(s.nextInt()){

7 case 1:

8 global1 = new T1(s.next()); // H1

9 global1.objA = new T2(); // H2

10 T2 a = global1.objA;

11 a.id = s.nextInt(); // E1

12 a.name = s.next(); // E2

13 break;

14 case 2:

15 global1 = new T1(s.next()); // H3

16 global1.objB = new T3(); // H4

17 T3 b = global1.objB;

18 b.id = s.nextInt(); // E3

19 b.name = s.next(); // E4

20 break;

21 case 3:

22 global1 = new T1(s.next()); // H5

23 global1.objC = new T4(); // H6

24 T4 c = global1.objC;

25 c.id = s.nextInt(); // E5

26 c.name = s.next(); // E6

27 break;

28 }

29 global2 = new T5(s.nextInt()); // H7

30 global2.objD = new T6(); // H8

31 T6 d = global2.objD;

32 d.objE = new T7(); // H9

33 T7 e = d.objE;

34 e.id = s.nextInt(); // E7

35 T1 local1 = new T1(); // H10

36 local1.id = s.nextInt(); // E8

37 T5 local2 = new T5(); // H11

38 local2.id = s.nextInt(); // E9

39 }

40 }

41 public class Thread2 extends Thread{

42 public void run(){

43 T5 global2 = Thread1.global2;

44 T6 d = global2.objD;

45 T7 e = d.objE;

46 System.out.println(e.id);

47 }

48 public static void main(String[] args){

49 new Thread1().start();

50 new Thread2().start();

51 }

52 }

Fig. 1. Code fragment of an example Java program.

On average, BinGraph has 45.36%, 23.38%, and 45.64% lower inversion count (the number of pairs

of a false alarm inspected by the user before a true alarm) than these baselines, respectively.

Contributions. This paper makes the following contributions:

(1) We propose a framework BinGraph for learning abstraction selection for Bayesian program

analysis. BinGraph has a direct optimization effect on the generalization ability and is general

to apply to Bayesian program analyses with different logical rules.

(2) We show the effectiveness of BinGraph on diverse analyses applied to a suite of real-

world programs. BinGraph significantly improves the generalization ability of the Bayesian

program analyses compared to baselines.

2 MOTIVATING EXAMPLE

This section will take a thread-escape analysis on the Java code fragment in Figure 1 as an

example to explain our problem and key idea. It is synthetic code for illustration. The concrete

members of those classes are not important. Please focus on the points-to relation between fields

and objects. There are two subclasses of Thread. The run method of Thread1 allocates several

objects, and the static fields of Thread1 point to some of these objects. The runmethod of Thread2

operates on a static field of Thread1 and outputs relevant information.

There are 9 statements that the user is concerned with, labeled with E1 to E9 in the comments.

The user wants to know if the targets on which these statements operate are accessed by multiple
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Input relations

FH(ℎ) : A static field may point to ℎ.

HFH(ℎ1, ℎ2) : A non-static field of ℎ1 may point to ℎ2.

EH(4, ℎ) : The statement 4 may operate on a non-static field of ℎ.

HL(ℎ, ;) : The abstraction level for ℎ is ; .

HT(ℎ, C) : The class type of ℎ is C .

Output relations

HX(ℎ, G) : ℎ is considered as G during analysis.

FX(G) : A static field may point to G .

XFX(G1, G2) : A non-static field of G1 may point to G2.

EX(4, G) : The statement 4 may operate on a non-static field of G .

escX(G) : G may be accessed by multiple threads.

escE(4) : The target of 4 may be accessed by multiple threads.

Derivation rules

'1 : HX(ℎ, C) :- HL(ℎ, 0),HT(ℎ, C).
'2 : HX(ℎ,ℎ) :- HL(ℎ, 1)
'3 : FX(G) :- FH(ℎ),HX(ℎ, G) .
'4 : XFX(G1, G2) :- HFH(ℎ1, ℎ2),HX(ℎ1, G1),HX(ℎ2, G2) .
'5 : EX(4, G) :- EH(4, ℎ),HX(ℎ, G) .
'6 : escX(G) :- FX(G) .
'7 : escX(G2) :- escX(G1), XFX(G1, G2) .
'8 : escE(4) :- EX(4, G), escX(G).

Fig. 2. A simplified parametric thread-escape analysis in Datalog. Here ℎ,ℎ1, ℎ2 are allocation-site-based
objects and G, G1, G2 are objects based on allocation sites or class types.

threads.1 Since Thread2 only operates the static field global2, only the operation target of state-

ment E7 is accessed by multiple threads during the actual execution of the program. We will show

how a Bayesian parametric thread-escape analysis can help the user find statement E7.

2.1 A Parametric Thread-Escape Analysis

The analysis in Datalog is shown in Figure 2, which is simplified compared to the real analysis

for exposition. The analysis is flow- and context-insensitive. Many analyses are parameterized to

allow tuning their abstractions to balance the trade-off between precision and scalability. So is the

example analysis. The parameters decide how to model various program facts in the abstraction,

which we refer to as the modeling strategies for these facts. For example, in a cloning-based pointer

analysis such as the :-object-sensitive pointer analysis [Milanova et al. 2005], each call site can

be parameterized with a : value to decide the strategy to model the calling context associated

with it. As for the thread-escape analysis, it is parameterized by how each heap object is modeled.

There are two strategies to model an object: (1) it is considered as the same abstract object as

other objects of the same class and the same modeling strategy, or (2) it is considered as the same

abstract object as other objects that are created at the same line (allocation site) and of the same

strategy. Two objects will not be considered as the same abstract object if they adopt different

modeling strategies. There are 11 allocation sites related to the analysis, labeled with H1 to H11

in the comments. Their class types consist of T1 to T7. For each allocation site, we can model the

objects it allocates in one of these two strategies. If an allocation site adopts the first strategy, we

1Some thread-escape analyses concern whether certain objects are visible to multiple threads. Here, we care about accessi-

bility which is more useful for downstream concurrency analyses such as datarace checkers.
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say it has an abstraction level of 0, otherwise, the abstraction level is 1. Here, an abstraction level is

the specific parameter to configure the modeling strategy for all objects created at an allocation

site. In other analyses, abstraction levels may be associated with different program elements. In

the example, we parameterize the whole abstraction used in the analysis by a Boolean vector for

simplicity, whose length is the number of allocation sites in the program. The 8-th element of the

vector indicates the abstraction level of the 8-th allocation site. When an allocation site adopts a

higher abstraction level, the abstraction becomes more precise, but it may lead to less scalable. This

parametric setup is used in conventional analysis to balance precision/scalability trade-offs.

Concretely, relation HL encodes the abstraction, and HX encodes which abstract object that

objects at an allocation site are modeled as. Rules '1 and '2 describe how to compute HX from HL.
Besides HL, other input relations encode points-to information that is computed by an allocation-

site-based pointer analysis. Rules '3, '4, and '5 lift them to use the appropriate abstract objects

based on HX. Finally, rules '6, '7 and '8 describe the main logic of the analysis: (1) if an object is

assigned to a static field, it escapes;2 (2) if the field of an escaped object points to an object, the

latter object also escapes. A Datalog inference engine takes these rules and the input relations

(from the result of earlier analyses of the Java code fragment), and keeps deriving output tuples

until no more output tuples can be derived. The rules over-approximate and can produce false

alarms. The approximations come from (1) heap abstraction where multiple concrete objects at

runtime are abstracted as one abstract object, and (2) the fact that if an object is reachable from a

static field, it may not be accessed by multiple threads (e.g., the program is single-threaded). We

explain (1) more using an example. Consider an abstract object $ which consists of two concrete

objects >1 and >2. Suppose >1 is pointed by a static field, and >2 does not escape. Then according to

'6, $ escapes which includes >2, which over-approximates. Suppose instruction 4 only accesses >2,

then according to '8, 4 accesses an escaped object, which again over-approximates. The argument

holds similarly for '7.

When an abstraction is given, we can visualize all the input tuples, derived tuples, and the ground

clauses (i.e., rule instances) involved in deriving these tuples as a directed graph. We refer to such

tuples and rule instances as the analysis derivation for an analysis run, and the corresponding graph

as the derivation graph. Figure 3 shows the derivation graphs under three different abstractions.

In these graphs, vertices that are not wrapped in boxes represent relevant ground clauses. For

example, '7 (H1, H2) represents one instance of rule '7 involving elements H1 and H2. Vertices that

are wrapped in boxes represent tuples. The ones with white backgrounds represent derived tuples

while the ones with grey backgrounds represent input tuples. In particular, vertices with double

frames represent alarm tuples. For each abstraction, the analysis gives 7, 9, and 8 alarms respectively,

of which only escE(E7) is a true alarm. The more precise the abstraction, the fewer false alarms

the analysis based on it will generate. However, it is difficult for the user to find the true alarm

quickly even using the most precise abstraction. We next show how Bayesian program analysis

helps the user find the true alarm faster.

2.2 A Parametric Bayesian Program Analysis and the Abstraction Selection Problem

We first introduce Bayesian program analysis briefly. It transforms the analysis derivation to a

probabilistic model, incorporates posterior information, calculates the probability of each alarm

being true, and displays the highest one to the user. The user checks whether this alarm is true

and feeds it back. Then, using the feedback as posterior information, the probability is calculated

again and the interaction continues. We refer to the process of updating probabilities of alarms

based on posterior information as generalization, and the ability to produce good alarm rankings

2Thread objects also escape. For simplicity, we do not consider them in the example.
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FX(H1)

'6 (H1)

escX(H1)XFX(H1, H2)

'7 (H1, H2)

escX(H2)EX(E1, H2)

'8 (E1, H2)

escE(E1)

EX(E2, H2)

'8 (E2, H2)

escE(E2)

FX(H3)

'6 (H3)

escX(H3)XFX(H3, H4)

'7 (H3, H4)

escX(H4)EX(E3, H4)

'8 (E3, H4)

escE(E3)

EX(E4, H4)

'8 (E4, H4)

escE(E4)

FX(H5)

'6 (H5)

escX(H5)XFX(H5, H6)

'7 (H5, H6)

escX(H6)EX(E5, H6)

'8 (E5, H6)

escE(E5)

EX(E6, H6)

'8 (E6, H6)

escE(E6)

FX(H7)

'6 (H7)

escX(H7) XFX(H7, H8)

'7 (H7, H8)

escX(H8) XFX(H8, H9)

'7 (H8, H9)

escX(H9)

EX(E7, H9)

'8 (E7, H9) escE(E7)

(a) Abstraction (1, represented as 11111111111.

FX(T1)

'6 (T1)

escX(T1)EX(E8, T1)

'8 (E8, T1)

escE(E8)

XFX(T1, T2) '7 (T1, T2)

escX(T2)EX(E1, T2)

'8 (E1, T2)

escE(E1)

EX(E2, T2)

'8 (E2, T2)

escE(E2)

XFX(T1, T3) '7 (T1, T3)

escX(T3)EX(E3, T3)

'8 (E3, T3)

escE(E3)

EX(E4, T3)

'8 (E4, T3)

escE(E4)

XFX(T1, T4) '7 (T1, T4)

escX(T4)EX(E5, T4)

'8 (E5, T4)

escE(E5)

EX(E6, T4)

'8 (E6, T4)

escE(E6)

FX(T5)

'6 (T5)

escX(T5)XFX(T5, T6)

'7 (T5, T6)

escX(T6)XFX(T6, T7)

'7 (T6, T7)

escX(T7)EX(E7, T7)

'8 (E7, T7)

escE(E7)

EX(E9, T5) '8 (E9, T5) escE(E9)

(b) Abstraction (2, represented as 00000000000.

FX(T1)

'6 (T1)

escX(T1)EX(E8, T1)

'8 (E8, T1)

escE(E8)

XFX(T1, T2) '7 (T1, T2)

escX(T2)EX(E1, T2)

'8 (E1, T2)

escE(E1)

EX(E2, T2)

'8 (E2, T2)

escE(E2)

XFX(T1, T3) '7 (T1, T3)

escX(T3)EX(E3, T3)

'8 (E3, T3)

escE(E3)

EX(E4, T3)

'8 (E4, T3)

escE(E4)

XFX(T1, T4) '7 (T1, T4)

escX(T4)EX(E5, T4)

'8 (E5, T4)

escE(E5)

EX(E6, T4)

'8 (E6, T4)

escE(E6)

FX(H7)

'6 (H7)

escX(H7)XFX(H7, T6)

'7 (H7, T6)

escX(T6)XFX(T6, T7)

'7 (T6, T7)

escX(T7)EX(E7, T7)

'8 (E7, T7)

escE(E7)

(c) Abstraction (3, represented as 00000010000.

Fig. 3. The derivation graphs of the analysis in Figure 2 applying to the code fragment in Figure 1 under the
three abstractions. Since the origin derivation graph is too huge to display, only derivation rules '6 to '8 are
displayed and output relations of derivation rules '3 to '5 are treated as input relations. The do�ed edges are
just for display purposes and are not different from other edges.

with a given amount of posterior information as the generalization ability of a Bayesian program

analysis. In the scenario of interactive alarm resolution, the stronger the generalization ability is,

the more true alarms will be ranked first with the same amount of user feedback, or the less user

feedback is needed to identify all true alarms. To estimate the generalization ability of Bayesian
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Table 1. The probability of each alarm before and a�er user feedback based on the abstraction (1.

(a) Pr(G)

Rank Prob. Alarm

1 0.857 escE(E1)

1 0.857 escE(E2)
1 0.857 escE(E3)
1 0.857 escE(E4)
1 0.857 escE(E5)
1 0.857 escE(E6)
7 0.815 escE(E7)

(b) Pr(G | ¬escE(E1))

Rank Prob. Alarm

1 0.857 escE(E3)
1 0.857 escE(E4)
1 0.857 escE(E5)
1 0.857 escE(E6)
5 0.815 escE(E7)
6 0.301 escE(E2)
7 0 escE(E1)

program analysis in the paper, we assume that the interaction does not stop until all true alarms

have been checked, and in practice, the user may stop at any point they want. In the example, we

use the number of rounds for the user to check all true alarms in the worst case (since there may

be some alarms with equal probability) as an evaluation metric. A lower value indicates a better

generalization ability.

Back to the example, rules '6, '7, '8 over-approximate and may derive spurious program facts.

We can quantify their imprecision by attaching probabilities to them. For simplicity, we set the

probabilities to 0.95. In practice, the probabilities can be learned from labeled programs. Following

this, a derivation graph can be converted into a Bayesian network. Specifically, each tuple and

relevant ground clause in the derivation graph is considered as a Bernoulli random variable,

representing whether the tuple or relevant ground clause holds. The relationships between adjacent

vertices on the derivation graph are expressed using conditional probabilities. Taking relevant

ground clause '7 (H1, H2) : escX(H2) :- escX(H1), XFX(H1, H2) as an example, the corresponding

conditional probabilities are:

Pr('7 (H1, H2) | escX(H1) ∧ XFX(H1, H2)) = 0.95 Pr(escX(H2) | '7 (H1, H2)) = 1

Pr('7 (H1, H2) | ¬escX(H1) ∨ ¬XFX(H1, H2)) = 0 Pr(escX(H2) | ¬'7 (H1, H2)) = 0

Similar conditional probabilities are used for each relevant ground clause and its adjacent vertices

on the derivation graph.

The probabilities that each alarm is true can be calculated by performing marginal inference on

the Bayesian networks [Murphy et al. 1999]. They are used to rank the alarms. We take the finest

abstraction (1 as an example. The probability of each alarm being true is shown in Table 1a. The

analysis displays the most probable alarm, escE(E1), to the user. The user finds that this alarm is

false and gives negative feedback. The analysis considers it as posterior information and updates

the probability of each alarm as shown in Table 1b. The interaction continues as the user pleases.

As shown in Table 2, in the 4-th round, the user receives the true alarm. Note that even though

there can be multiple most probable alarms in each round, the user always only needs to inspect 4

alarms to find the true alarm no matter which alarm is posed. On the other hand, the user needs to

inspect all 7 alarms in the worst case using the conventional analysis.

The performance of the Bayesian analysis can be further boosted using a better abstraction.

Consider abstraction (3 where only the abstraction level of H7 that is directly related to the true

alarm is assigned to 1. Using this abstraction, the performance of the conventional analysis degrades

as it now derives 8 alarms. However, using the Bayesian analysis, the user only needs to inspect

two alarms to find the true alarm. The reason is that a more coarse abstraction can sometimes

correlate more false alarms together. As a result, providing feedback on a false alarm can generalize
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Table 2. The alarm with the highest probability in each round based on each abstraction. Statistics a�er the
4-th round are not presented and they are all false alarms.

Round
Y1 = 11111111111 Y2 = 00000000000 Y3 = 00000010000

Prob. Alarm Prob. Alarm Prob. Alarm

1 0.857 escE(E1) 0.903 escE(E8) 0.903 escE(E8)
2 0.857 escE(E3) 0.903 escE(E9) 0.815 escE(E7)
3 0.857 escE(E5) 0.440 escE(E1) 0.440 escE(E1)
4 0.815 escE(E7) 0.418 escE(E7) 0.077 escE(E3)
· · · · · · · · · · · · · · · · · · · · ·

Static

analyzer

Inputs

Outputs

Rules

Program to be 
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Fig. 4. Overview of framework BinGraph for learning abstraction selection for Bayesian program analysis.

to more false alarms. Let us take a closer look at the derivation graph under (3 in Figure 3c. In it,

all false alarms are connected but disconnected from the only true alarm. As a result, providing

negative feedback on any false alarm will decrease the probability of all the other false alarms. But

the probability of the true alarm is unaffected and therefore its rank is improved. On the other

hand, in the derivation graph under (1, most false alarms are disconnected.

Using a too coarse-grained abstraction can also be harmful. Let us consider the cheapest abstrac-

tion (2. In its derivation graph shown in Figure 3b, all alarms are connected together. So feedback

on negative alarms will also affect the probability of the true alarm. As a result, its performance is

worse than that of (3.

From the observations, we draw two key insights. First, the abstraction selection heavily affects

the Bayesian analysis’ performance. Second, due to the problem of generalization, the Bayesian

analysis’ performance does not align with that of the conventional analysis. For conventional

analyses, ignoring efficiency, more precise abstractions will not lead to worse results. However,

in this example, (3 which is an abstraction in the middle in terms of precision, is the optimum

abstraction for the Bayesian analysis in all 211 possible abstractions. This shows that the abstraction

selection problem of Bayesian analysis is fundamentally different from that of conventional analysis,

and we need new techniques.

2.3 Our Approach

Figure 4 shows the workflow of our approach to this problem, BinGraph. BinGraph is a learning-

based approach. Let us focus on its online part for now. Starting from the coarsest abstraction

((2 in the example), it tries to refine the abstraction iteratively. Although in the example the
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abstraction level can only be a Boolean value, in general, it can be a natural number. Further, the

parameterization may not be associated with allocation sites in other analyses, but with program

elements such as methods and variables. We refer to these program elements as abstraction points.

Raising the abstraction level for abstraction points makes the abstraction more precise. This is a

very common setting in conventional analysis. For example, the abstraction level is the degree of

context-sensitivity for each call site in parametric :-object-sensitive pointer analysis [Milanova

et al. 2005]. Moreover, for each abstraction point with a certain abstraction level, a parameter tuple

is included in the input. For example, if the abstraction level for H1 is 0, then the parameter tuple is

HL(H1, 0). If the abstraction level for H1 is 1, then the parameter tuple is HL(H1, 1).
In each iteration, BinGraph decides to raise the abstraction level of each abstraction point by

one or keep it unchanged. The number of iterations is the same as the maximum abstraction level

(only one in the example). As a learning-based approach, BinGraph characterizes the impact of

raising the level for each abstraction point, then determines whether to raise it based on the learned

strategy.

To obtain Effectiveness, BinGraph considers two derivation graphs when characterizing a pa-

rameter. The first one is the derivation graph under the current abstraction ((2 in the example).

Another one is the derivation graph under the abstraction after overall refinement (i.e., raising

the abstraction level for each abstraction point by one, corresponding to (1 in the example). The

analyzed information under a coarse abstraction may reflect relevant properties when using a more

precise abstraction in conventional analysis. This is mainly based on that the finer the abstraction

is, the better the analysis result is. Since this assumption does not hold for Bayesian analysis, only

using information under a coarse abstraction is unable to accurately predict the effect of analysis

under a more precise abstraction. Therefore, using both derivation graphs under two abstractions

ensures that the abstraction is made more beneficial to analysis results in each iteration.

To obtain Generality, BinGraph only considers derivation graph properties that are related to

parameter tuples (HL(G,~)) in the example). While BinGraph can be configured with different

graph properties, given a parameter tuple, it uses three property types in the experiments: (1) the

count of reachable vertices, (2) the average of shortest distance to reachable vertices, and (3) the

count of vertices with shortest distance ≤ : . Note that these properties are only relevant to the

derivation graph and not to the semantics of the analysis, so they can be applied to any type of

Bayesian program analysis. Moreover, adding other property types is also supported in BinGraph.

The intuition behind choosing these three kinds of features is that they reflect the potential impact

of refining parameter tuples on information propagation in a Bayesian network:

(1) The count of reachable vertices. It reflects the number of vertices that are potentially

affected by refining a parameter tuple. In other words, it reflects the overall influence of

refining the tuple on the Bayesian network.

(2) The average of shortest distance to reachable vertices. Since the impact on each vertex in

the Bayesian network becomes weaker when the distance from the parameter tuple becomes

farther, this feature reflects the average impact on reachable vertices of refining the parameter

tuple.

(3) The count of vertices with shortest distance ≤ : . This feature reflects the potential

influence to a certain subgraph. In other words, it reflects the number of affected vertices

within a certain distance. Moreover, irrelevant to information propagation, this feature can

capture different subgraph patterns within a given radius, which in turn can be used to

identify parameter tuples that need to be refined. In our experiments, we have nine features

of this kind where : = 2, 3, . . . , 10.
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Table 3. Properties in two derivation graphs. Note that properties are a subset of those used in the experiments,
and the types of properties can be arbitrarily set in actual use.

Property type HL(H1, 0) HL(H1, 1) Ratio

The count of reachable vertices 35 13 0.371

The average of shortest distance to reachable vertices 4.114 4.462 1.085

The count of vertices with shortest distance ≤ 5 18 8 0.444

HL(H1, 0)

'1 (H1, T1)

HX(H1, T1)

'3 (T1)

FX(T1)

'6 (T1)

escX(T1)

'5 (E8, H1, T1)

EX(E8, T1)

'8 (E8, T1)

escE(E8)

'4 (H1, H2, T1, T2) XFX(T1, T2) '7 (T1, T2) escX(T2)

'8 (E1, T2)

escE(E1)

'8 (E2, T2)

escE(E2)

'4 (H3, H4, T1, T3) XFX(T1, T3) '7 (T1, T3) escX(T3)

'8 (E3, T3)

escE(E3)

'8 (E4, T3)

escE(E4)

'4 (H5, H6, T1, T4) XFX(T1, T4) '7 (T1, T4) escX(T4)

'8 (E5, T4)

escE(E5)

'8 (E6, T4)

escE(E6)

(a) The derivation graph based on (2 and the vertex HL(H1,0).

HL(H1, 1)

'2 (H1)

HX(H1, H1)

'3 (H1)

FX(H1)

'4 (H1, H2)

XFX(H1, H2) '7 (H1, H2) escX(H2)

'8 (E1, H2)

escE(E1)

'8 (E2, H2)

escE(E2)

(b) The derivation graph based on (1
and the vertex HL(H1,1).

Fig. 5. The derivation graphs based on (2 and (1. Only reachable vertices of parameter tuples are displayed.

We did not design these features specifically for the analyses in the paper but believe they are

general features that reflect the impact of information propagation. However, there is space for

carefully engineering features for a specific analysis to achieve even better performance.

We take the part related to H1 as an example to explain BinGraph. BinGraph calculates the

properties of HL(H1, 0) in the derivation graph under (2 and the properties of HL(H1, 1) in graph

under (1. Here, we consider three properties which are shown in Table 3, where only one distance

threshold is considered for the third property for simplicity. Figure 5 shows the subgraphs that are

relevant to compute these properties. The actual feature vector is a three-dimensional real vector,

each element of which is a ratio between a property on the original graph and its counterpart

on the refined graph. Table 3 shows these values for H1. Following this approach, H3 and H5

have the same characteristic (0.371, 1.085, 0.444) as H1, while H7 has the different characteristic

(0.882, 0.940, 0.778). The strategy learned by BinGraph is represented as a set of three-dimensional

cubes: only parameter tuples whose feature values fall into them will be refined. For example,

suppose, by training on similar programs, BinGraph learns a strategy that is represented by one

cube [0.8, 1] × [0.9, 1] × [0.7, 1]. Using this strategy, BinGraph is able to separate H7 from other

allocations. Its allocation site is precisely what we need to raise the abstraction level to obtain the

optimum abstraction (3. We will go into more detail about the online and offline parts of BinGraph

in Section 4.

3 PRELIMINARIES

3.1 Datalog Syntax and Semantics

A Datalog program D = (� ,$, ') consists of input relations � ⊆ R, output relations $ ⊆ R and

derivation rules ' ⊆ C. The auxiliary definitions and notations are shown in Figure 6. A substitution
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(variables) V = {ℎ1, G2, . . . }

(constants) D = {E1, H1, 0, 1, . . . }

(relations) R = {HFH, escE, . . . }
(literals) L = R × (D ∪ V)∗ = {HFH(ℎ1, ℎ2),HL(ℎ, 0), . . . }
(tuples) T = R × D∗ = {HFH(H1, H2),HL(H1, 0), . . . }
(clauses) C = L × L∗ = {[escX(G2) :- escX(G1), XFX(G1, G2)], . . . }

Fig. 6. Auxiliary definitions and notations of Datalog.

�', 52 ∈ �(T) → �(T)

�' () ) = ) ∪ {52 () ) | 2 ∈ '}

5[;0:-;1,...,;= ] () ) = {f (;0) | f (;8 ) ∈ ) for 1 ≤ 8 ≤ =, f ∈ �}

Fig. 7. Semantics of Datalog.

function f ∈ Σ = V → D replaces a variable with a constant. We also abuse its notation so it

applies to a literal by replacing all variables in the literal with constants according to the function.

In other words, for a literal ; = A (01, 02, . . . , 0=), f (;) = A (11, 12, . . . , 1=) where 18 = 08 if 08 ∈ D else

18 = f (08 ). The output tuples of the Datalog program D with the input tuples )0 ⊆ T is defined

as [[D,)0]] = lfp(�',)0). Here, �' computes output tuples by applying rules in ' to a given set of

tuples for one round. In other words, let ) be the output tuples a Datalog program computes: the

program initially makes ) ← )0 and then keeps making ) ← �' () ) until ) = �' () ), at which

point ) is [[D,)0]]. Figure 7 shows the relevant definitions.

3.2 Parametric Datalog Program Analysis

We now turn to Datalog programs that implement parametric program analyses. Compared to a

standard Datalog program, its input now consists of two parts: (1) a set of tuples that are extracted

from a given program % ∈ P, (2) a set of tuples that encode abstraction parameters. For simplicity,

we omit the first part and assume a program % is given. While the form of the abstraction family

varies, the specific form we consider is parameterized by an array of natural numbers. Such a form

can encode rich ways to parameterize an analysis, including context sensitivity, lengths of access

paths, number of unrollings of a loop, and others. Typically, the length of such an array varies across

programs and each element is associated with a program fact such as an allocation site. We refer to

such program facts as abstraction points, and the set of all abstraction points in a given program %

as an abstraction point set AS ⊆ D. We refer to the number associated with an abstraction point as

its abstraction level. We use AL to denote the allowed maximum abstraction level. The abstraction,

or the analysis’s configuration is defined as ( ∈ AS→ {0, 1, . . . ,AL}. So there are total (AL + 1) |AS |

possible abstractions. Specifically, we define S0 as the coarsest abstraction such that S0 (G) = 0

holds for G ∈ AS. We generate parameter tuples using function AI ∈ D × N→ T which maps an

abstraction point and its level to a tuple. The output tuples based on the abstraction ( are defined

as Output(() = [[D, {AI(G, ( (G)) | G ∈ AS}]].

Among the output tuples, we use @ ∈ R to denote a query relation that represents alarms. The

output alarms is defined as Alarms(() = {C | C = @(01, 02, . . . , 0=) ∈ Output(()]}. Typically, a

higher abstraction level leads to a more precise and expensive abstraction. Formally, for a program

% , abstractions ( and ( ′, if ( (G) ≤ ( ′ (G) holds for any G ∈ AS, then Alarms(() ⊇ Alarms(( ′).
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As a result, a parametric Datalog program analysis can defined as A = (D, @,AS,AL,AI).

Example 3.1. Consider the parametric Datalog analysis A = (D, @,AS,AL,AI) shown in Sec-

tion 2 applying to the program % shown in Figure 1: D is shown in Figure 2; @ is the relation

escE; AS is the set of allocation sites {H1, H2, . . . , H11}; AL is equal to 1; AI(G,~) = HL(G,~)
where G ∈ AS and ~ ∈ {0, 1}; tuples in FH, HFH, and EH are the non-parameter input

tuples. For three abstractions we presented in the example, (1 (G) = 1 holds for G ∈ AS,

(2 = S0, (3 (G) = 0 holds for G ∈ AS − {H7} and (3 (H7) = 1. Taking (1 as an example,

Output((1) = {FX(H1), XFX(H1, H2), escX(H1), escE(E1), . . . } is the set of all tuples in output

relations HX, FX, XFX, EX, escX and escE. Alarm((1) = {escE(E1), escE(E2), . . . , escE(E7)} is
the set of tuples representing alarms. Since (2 (G) ≤ (3 (G) ≤ (1 (G) holds for any G ∈ AS(%),

Alarms((2) ⊇ Alarms((3) ⊇ Alarms((1) holds.

3.3 Parametric Bayesian Program Analysis

We only introduce the Bayesian program analysis using user feedback as posterior information

in this part. A parametric Bayesian program analysis is based on a parametric Datalog program

analysis A = (D, @,AS,AL,AI). We assume abstraction ( is used when analyzing program % . We

next explain how to convert a Bayesian analysis into a probabilistic graphical model to compute

the probabilities of the alarms. A ground clause is a clause that does not involve any variable. We

refer to a ground clause that is involved in the analysis derivation as a relevant ground clause.

Formally, a relevant ground clause is ( [;0 :- ;1, . . . , ;=], C0, C1, . . . , C=) ∈ C × T
∗ such that it satisfies

C8 ∈ Output(() and there exists a function f ∈ � that f (;8 ) = C8 holds. The set of all relevant

ground clauses is defined as Ground((). The derivation graph is defined as Graph(() = (+ , �). It

is a directed graph and + = Output(() ∪ Ground((). For each 8 = (2, C0, C1, . . . , C=) ∈ Ground((),

there exist = + 1 directed edges (C1, 8), . . . , (C=, 8), (8, C0) in �. A derivation graph with the above

definition may contain cycles, which can be problematical for efficient inference. Following previous

works [Chen et al. 2021; Heo et al. 2019b; Kim et al. 2022; Raghothaman et al. 2018], we remove

cycles in the graph. In the rest of the paper, we assume Graph(() = (+ , �) contains no cycles.

Example 3.2. Take the parametric Datalog analysis A = (D, @,AS,AL,AI) shown in Sec-

tion 2 using abstraction (1 applying to the program % shown in Figure 1 as an example:

( [escX(G2) :- escX(G1), XFX(G1, G2)], escX(H2), escX(H1), XFX(H1, H2)) ∈ Ground((1), and the ver-

tex representing it in the derivation graph Graph((1) is '7 (H1, H2) in Figure 3a. Note that the three

derivation graphs in Figure 3 are not complete for display convenience.

To compute the marginal probabilities of the alarms, the derivation graph is compiled into a

Bayesian network. For each E in + , a Bernoulli random variable GE is created. We denote the set of

these random variables as - . In addition, we assume there exists a function . ∈ C→ [0, 1] that

assigns a probability to each rule in the original Datalog analysis. Such a function can be learned on

labeled data or specified by experts. Since our focus is the impact of abstraction selection, we use the

same configuration in previous research [Raghothaman et al. 2018] where we set . (2) = 0.999 for

all rules in the experiments. For each C ∈ Output((), let the relevant ground rules that can derive

it be 81, 82, . . . , 8= , we create edges between their corresponding random variables with conditional

probabilities Pr(GC | G81 ∨ G82 ∨ · · · ∨ G8= ) = 1 and Pr(GC | ¬G81 ∧ ¬G82 ∧ · · · ∧ ¬G8= ) = 0. For

each 8 = (2, C0, C1, . . . , C=) ∈ Ground((), we create edges with conditional probabilities Pr(G8 |

GC1 ∧ GC2 ∧ · · · ∧ GC= ) = . (2) and Pr(G8 | ¬GC1 ∨ ¬GC2 ∨ · · · ∨ ¬GC= ) = 0. Then, � = (+ , �, -,. ) forms

a Bayesian network [Koller and Friedman 2009].

Example 3.3. Consider the following two relevant ground clauses:

21 = ( [A(C) :- B(C),C(C)],A(C1),B(C1),C(C1)) 22 = ( [A(C) :- D(C), E(C)],A(C1),D(C1), E(C1))
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The corresponding conditional probabilities in the Bayesian network are:

Pr(G21 | GB(C1 ) ∧ GC(C1 ) ) = 0.999 Pr(G21 | ¬GB(C1 ) ∨ ¬GC(C1 ) ) = 0

Pr(G22 | GD(C1 ) ∧ GE(C1 ) ) = 0.999 Pr(G22 | ¬GD(C1 ) ∨ ¬GE(C1 ) ) = 0

Pr(GA(C1 ) | G21 ∨ G22 ) = 1 Pr(GA(C1 ) | ¬G21 ∧ ¬G22 ) = 0

Finally, we present using a Bayesian program analysis to perform interactive alarm resolution. The

interaction consists of multiple rounds, in each of which the analysis produces an alarm and the user

inspects it and provides binary feedback. Let �8 be the set of user feedback before the 8-th round. Ini-

tially, �1 = ∅. For the 8-th round, using probability inference algorithms [Murphy et al. 1999] on the

Bayesian network �, the alarm with the highest probability, 0 = argmaxC ∈Alarm(( ) Pr
(

GC |
∧

4∈�8 4
)

,

will be displayed to the user. The user will check if 0 is true and feed it back. If 0 is true then

�8+1 = �8 ∪ {G0} else �8+1 = �8 ∪ {¬G0}, and the interaction moves to the next round. The user

may terminate the interaction at any time. To evaluate the generalization ability of Bayesian

program analysis in the experiments, we assume that the user does not terminate until all alarms

have been checked. This setup follows recent works [Chen et al. 2021; Heo et al. 2019b; Kim et al.

2022; Raghothaman et al. 2018] in Bayesian program analysis. In practice, the user may use other

termination conditions. For example, they may decide to stop after = consecutive alarms are false.

In our experiments, it is usually that a small fraction of the true alarms can only be discovered

after inspecting many false alarms. Let ;8 be 1 if the alarm displayed in the 8-th round is true else

be 0. We use the inversion count of ;1, ;2, . . . , ;= to evaluate the quality of the analysis results. The

inversion count is the number of pairs of a false alarm and a true alarm such that the false alarm is

inspected by the user before the true alarm, and thus reflects the generalization ability. We define

Inversion(() =
∑=

8=1

∑=
9=8+1 [;8 > ; 9 ]

3. There are also three other metrics used in previous research.

We will demonstrate them in Section 5 as a supplement.

Example 3.4. Take the parametric Datalog analysis A = (D, @,AS,AL,AI) shown in Section 2

applying to the program % shown in Figure 1 as an example: Inversion((1) = Inversion((2) = 3

and Inversion((3) = 1, so the Bayesian program analysis under abstraction (3 has stronger

generalization ability according to our metric. Table 2 visualizes the whole process of interaction.

The probabilities of the rules we presented in the example are 0.95, which are different from those

in the experiments.

4 THE BINGRAPH FRAMEWORK

Given a parametric Bayesian program analysis based on a parametric Datalog program analysis

A = (D, @,AS,AL,AI), the goal of abstraction selection problem is to find a function 5 ∈ P →

(D → N) to minimize a given metric (e.g., Inversion(5 (%))) for every program to be analyzed

% ∈ P. BinGraph applies a data-driven approach to address this problem and consists of two parts.

The online part selects an abstraction for a given program by iteratively raising abstraction levels

of abstraction points. The offline part learns a strategy from training programs for use in the online

part. We will introduce these two parts in the next two subsections.

4.1 Online Part of BinGraph

We summarize the online selection process of BinGraph. As shown in Figure 4, starting from the

coarsest abstractionS0, it iteratively refines the abstraction forAL rounds whereAL is the maximum

abstraction level. We use (8 to denote the abstraction after the 8-th round, and (0 = S0 to denote the

initial abstraction. In the 8-th round, BinGraph calculates analysis derivation characteristics for each

abstraction point based on the abstraction (8−1. For each abstraction point G , if its characteristics

3 [ ] denotes Iverson Bracket. If the statement ( is true, then [( ] = 1 else [( ] = 0.
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Algorithm 1 Selection algorithm.

Input: A strategy Learned ⊆ RN .

Output: A function 5 ∈ P→ (D→ N).

1: procedure Select(Learned)

2: Let % ∈ P be the program to be analyzed, (0 ← S0
3: for 8 = 1→ AL do

4: (8 ← (8−1
5: for G ∈ AS(%) do

6: (8 (G) ← (8−1 (G) + [_((8−1, G) ∈ Learned]
3

7: return 5 (%) = (AL

matches the learned strategy, then (8 (G) ← (8−1 (G) +1 else (8 (G) ← (8−1 (G). After the AL-th round,

(AL will be the abstraction selected by BinGraph. Our design chooses to iterate a fixed number of

AL times, instead of setting a termination condition such as ( = ( ′ or when the difference between

( and ( ′ is small. This is because it can take many iterations for it to be satisfied. There are two main

reasons: (1) there may be noise in our learned strategy, and (2) after refining an abstraction point,

the features of other abstraction points can change, which may lead to a chain reaction consisting

of many rounds. Our design is a simpler alternative which ensures that the highest abstraction

level is reachable.

Example 4.1. Suppose the maximum abstraction level AL = 3 and the size of the set of abstraction

points |AS| = 5. We use a natural number vector of length 5 to represent an abstraction for simplicity.

The 8-th element of the vector indicates the abstraction level of the 8-th abstraction point. Initially,

(0 can be represented as 00000. In the 1-st round of the online part of BinGraph, the overall

refinement of (0 is (
′
0 : 11111. BinGraph characterizes each of 5 abstraction points based on two

derivation graphs based on (0 and (
′
0. We assume only the characteristics of the 3-rd and the 4-th

abstraction points match the learned strategy, then we have (1 : 00110. In the 2-nd round, the

overall refinement of (1 is (
′
1 : 11221. BinGraph characterizes each of 5 abstraction points based on

two derivation graphs based on (1 and (
′
1. We assume only the characteristics of the 3-rd and the

5-th abstraction points match the learned strategy, then we have (2 : 00211. In the 3-rd round, the

overall refinement of (2 is (
′
2 : 11322. BinGraph characterizes each of 5 abstraction points based

on two derivation graphs based on (2 and (
′
2. We assume only the characteristics of the 3-rd and

the 4-th abstraction points match the learned strategy, then we have (3 : 00321. Finally, (3 is the

abstraction selected by BinGraph.

We present the selection algorithm in Algorithm 1 and explain relevant definitions in detail. The

analysis derivation characteristics are calculated based on an abstraction and its overall refinement.

An overall refinement raises the abstraction levels of all abstraction points by one. Formally, given

a program % and an abstraction ( , the overall refinement of ( is ( ′ ∈ AS → {0, 1, . . . ,AL} such

that ( ′ (G) = ( (G) + 1 for G ∈ AS. BinGraph uses graph properties to characterize each abstraction

point on the derivation graphs based on abstraction ( and ( ′. Formally, let N be the number of

properties and V8 (�, E) ∈ R be the 8-th property for the vertex E in graph � .

To combine characteristics of each abstraction point in two derivation graphs, we define the

feature value for each abstraction point G as _((, G) ∈ RN , where the 8-th component is:

_8 ((, G) =
V8 (Graph((

′),AI(G, ( ′ (G))

V8 (Graph((),AI(G, ( (G))
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Algorithm 2 Labeling algorithm.

Input: A set of training programs %T ⊆ P.

Output: Labeled sets of feature values Labeled0, Labeled1 ⊆ R
N .

1: procedure Label(%T)

2: Labeled0 ← ∅, Labeled1 ← ∅

3: for % ∈ %T do

4: Let % be the program to be analyzed, (0 ← S0
5: for 8 = 1→ AL do

6: Using SA to find (8 ∈ Search((8−1) minimizing Inversion((8 )

7: for G ∈ AS(%) do

8: ; ← [(8 (G) ≠ (8−1 (G)]
3

9: Labeled; ← Labeled; ∪ {_((8−1, G)}

10: return Labeled0, Labeled1

The feature value of an abstraction point represents its analysis derivation characteristics based

on a certain abstraction. Feature values will be used throughout the process of BinGraph. The

strategy Learned is a set of feature values calculated in the offline part. If the feature value of an

abstraction point is contained in Learned, then its abstraction level is raised. The types of properties

used in the experiments will be demonstrated in Section 5.

Example 4.2. Take the parametric Datalog analysisA = (D, @,AS,AL,AI) shown in Section 2 ap-

plying to the program % shown in Figure 1 as an example: the types of properties are shown in Table 3

with N = 3. V1 (Graph((2),AI(H1, 0)) = 35 represents the count of reachable vertices from vertex

HL(H1, 0) in the derivation graph shown in Figure 5a. It can be shown that the overall refinement

of (2 is (1. V1 (Graph((1),AI(H1, 1)) = 13 represents the count of reachable vertices from vertex

HL(H1, 1) in the derivation graph shown in Figure 5b. Therefore, _1 ((2, H1) =
13
35

= 0.371. Similarly,

_((2, H1) = _((2, H3) = _((2, H5) = (0.371, 1.085, 0.444) and _((2, H7) = (0.882, 0.940, 0.778).

4.2 Offline Part of BinGraph

The offline part of BinGraph consists of a labeling algorithm and a learning algorithm. For

each training program, we obtain the true alarms on them in advance and simulate the whole

interaction under different abstractions automatically to calculate inversion counts. Algorithm 2

shows the labeling algorithm, which generates two labeled sets of feature values Labeled0, Labeled1
for subsequent supervised learning. Labeled0 corresponds to abstraction points whose abstraction

levels should not be raised, while Labeled1 corresponds to the opposite. The process of labeling

each training program is similar to selection. It consists of AL rounds and maintains an abstraction

(8 after the 8-th round. The difference is that (8 is an optimal abstraction obtained by searching

based on (8−1. Formally, we define the search space in the 8-th round as Search((8−1) = {( |

( ∈→ {0, 1, . . . ,AL}, (8−1 (G) ≤ ( (G) ≤ (8−1 (G) + 1}. In the 8-th round, an abstraction (8 with low

Inversion((8 ) is searched by Simulated Annealing (SA) [Kirkpatrick et al. 1983]. If the abstraction

level of an abstraction point G is raised, then _((8−1, G) is labeled with 1 else 0. It is obvious that

levels of abstraction points with similar characteristics to Labeled0 should not be raised, and it is

the opposite for Labeled1. The learning process of BinGraph is designed to exploit this insight. The

reason for our design choice (i.e., to only iterate for AL rounds) in labeling is similar to selection:

(1) too many and uncertain iteration rounds may introduce noise into the labeled data, and (2)

iterating for AL rounds ensures that the highest abstraction level is reachable.
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Algorithm 3 Learning algorithm.

Input: Labeled sets of feature values Labeled0, Labeled1 ⊆ R
N .

Output: A strategy Learned ⊆ RN .

1: procedure Learn(Labeled0, Labeled1)

2: Learned← ∅, !0 ← Labeled0, !1 ← Labeled1
3: while !1 ≠ ∅ do

4: � ← FindCube(!0, !1)

5: Learned← Learned ∪�, !0 ← !0 −�, !1 ← !1 −�

6: return Learned

Example 4.3. Suppose the maximum abstraction level AL = 2 and the size of the set of abstraction

points |AS| = 3. We use a natural number vector of length 3 to represent an abstraction for

simplicity. The 8-th element of the vector indicates the abstraction level of the 8-th abstraction

point. Initially, (0 can be represented as 000. In the 1-st round of the labeling process, the search

space is {000, 001, 010, 100, 011, 101, 110, 111}. BinGraph will choose an abstraction with minimum

inversion count during the interaction. We assume it is (1 : 110. Then, the feature values of the

1-st, and 2-nd abstraction points under abstraction (0 will be labeled as 1, and the 3-rd abstraction

point under abstraction (0 will be labeled as 0. In the 2-nd round of the labeling process, the search

space is {110, 111, 120, 210, 121, 211, 220, 221}. BinGraph will choose an abstraction with minimum

inversion count during the interaction. We assume it is (2 : 211. Then, the feature values of the 1-st,

3-rd abstraction points under abstraction (1 will be labeled as 1, and the 2-nd abstraction point

under abstraction (1 will be labeled as 0.

The learning algorithm of BinGraph is inspired by Graphick [Jeon et al. 2020]. The main idea

is to find a range of real values such that it covers as many suitable labeled feature values and

as few unsuitable labeled feature values as possible. Then, it is highly likely to be beneficial

for the analysis when raising the abstraction level of an abstraction point whose feature value

is contained in such a range. Since there are N types of property, we use N-dimension cubes

to represent a selection range. A N-dimension cube [;1, A1] × [;2, A2] × · · · × [;N, AN] includes all

the feature values whose 8-th element is contained in the segment [;8 , A8 ]. The learning algorithm

is shown in Algorithm 3, which generates a strategy Learned. Learned is a set of feature values,

which is implemented as a union of several N-dimension cubes. Formally, let Cubes =

{[;1, A1] × [;2, A2] × · · · × [;N, AN] | ;8 , A8 ∈ R, ;8 ≤ A8 } be the set of all N-dimension cubes, then

Learned ∈ {
⋃

�∈CubeSet� | CubeSet ⊆ Cubes} ⊆ RN . The learning algorithm maintains two sets of

labeled feature values !0 and !1. They are points in Labeled0 and Labeled1 which have not yet been

covered by !40A=43 . The algorithm expands !40A=43 through several rounds of computation until

!1 is empty. In each round, a N -dimension cube � ⊆ RN is calculated by the procedure FindCube

with the remaining labeled sets of feature values !0 and !1.� will be contained in the final strategy

Learned and the feature values contained by � will be remove from !0 and !1.

The algorithm of finding cubes is shown in Algorithm 4, which generates a N -dimension cube.

The output cube has proper coverage on remaining labeled sets of feature values !0 and !1. It starts

with the cube containing each feature value in !1 and gradually divides the cube into two smaller

cubes and picks the one with the higher FeatureScore. The definition of FeatureScore is:

FeatureScore(�, !0, !1) =
|� ∩ !1 |

|� ∩ (!0 ∪ !1) |
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Algorithm 4 Finding cubes during learning.

Input: Remained labeled sets of feature values !0, !1 ⊆ R
N .

Output: A N -dimension cube � ⊆ RN .

1: procedure FindCube(�0, �1)

2: <8 ← min{58 | 5 ∈ !1}, "8 ← max{58 | 5 ∈ !1}

3: � ← [<1, "1] × [<2, "2] × · · · × [<N, "N]

4: repeat

5: Random choose 8 ∈ {1, 2, . . . ,N}

6: Let � = [;1, A1] × [;2, A2] × · · · × [;N, AN],mid← ;8+A8
2

7: �L ← [;1, A1] × [;2, A2] × · · · × [;8 ,mid] × · · · × [;N, AN]

8: �R ← [;1, A1] × [;2, A2] × · · · × [mid, A8 ] × · · · × [;N, AN]

9: � ← argmax�′∈{�L,�R } FeatureScore(!0, !1,�
′)

10: until FeatureScore(!0, !1,�) ≥ \ or timeout

11: return �

FeatureScore describes the fraction of feature values in !1 in the cube. The division will terminate

if the FeatureScore is not less than a hyper-parameter \ or it exceeds the time limit. The final

cube will be returned.

Example 4.4. Consider N = 3, Labeled0 = {(3, 3, 3), (4, 4, 4), (5, 5, 5)}, Labeled1 = {(1, 1, 1), (2,

2, 2), (4, 4, 4), (6, 6, 6)} and the hyper-parameter \ = 0.6. Initially, we set !0 ← Labeled0 and !1 ←

Labeled1. The first cube starts from the smallest cube [1, 6] × [1, 6] × [1, 6] containing each feature

value in !1. The process of finding a cube is shown as follows, with the index randomly chosen:

[1, 6] × [1, 6] × [1, 6]

FeatureScore = 0.57

choose 8=1
−−−−−−−−→

[1, 3.5] × [1, 6] × [1, 6]

FeatureScore = 0.67

Then, the first cube [1, 3.5] × [1, 6] × [1, 6] is found. Feature values contained by this cube are

removed. Now we have !0 = {(4, 4, 4), (5, 5, 5)} and !1 = {(4, 4, 4), (6, 6, 6)}. The second cube starts

from the smallest cube [4, 6] × [4, 6] × [4, 6] containing each feature value in !1. The process of

finding a cube is shown following:

[4, 6] × [4, 6] × [4, 6]

FeatureScore = 0.5

choose 8=2
−−−−−−−−→

[4, 6] × [5, 6] × [4, 6]

FeatureScore = 0.5

choose 8=2
−−−−−−−−→

[4, 6] × [5.5, 6] × [4, 6]

FeatureScore = 1

Finally, the second cube [4, 6] × [5.5, 6] × [4, 6] is found. Feature values contained by this cube

are removed. Now we have !0 = {(4, 4, 4), (5, 5, 5)} and !1 = ∅. Therefore, the learning process is

terminated and the result is Learned = [1, 3.5] × [1, 6] × [1, 6] ∪ [4, 6] × [5.5, 6] × [4, 6].

5 EXPERIMENTAL EVALUATION

Our evaluation aims to answer the following questions:

RQ1. How effective is BinGraph at optimization for generalization ability of Bayesian program

analysis?

RQ2. How sensitive is BinGraph to the hyper-parameter and training benchmarks?

RQ3. Is it necessary to calculate the derivation graph after an overall refinement to characterize

abstraction points?

RQ4. How scalable is Bayesian program analysis using the abstraction selected by BinGraph?
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Table 4. Statistics of the instance analyses.

Analysis
# Input

relations

# Output

relations

# Derivation

rules

Datarace analysis 58 44 102

Thread-escape analysis 34 27 60

RQ5. Can an existing abstraction selection approach for conventional program analyses replace our

approach? Does an abstraction with a good balance of precision/scalability in a conventional

analysis happen to be one with good generalization in its Bayesian counterpart?

We describe our experimental setup in Section 5.1, then discuss answers to the above questions

in Section 5.2 to Section 5.6.

5.1 Experimental Setup

We conducted all experiments on Linux machines with 2.6 GHz processors and 256 GB RAM

running Oracle HotSpot JVM 1.6. We use the Chord framework [Naik et al. 2006] for Datalog

program analysis and the Bingo framework [Raghothaman et al. 2018] for Bayesian inference. We

set a size limit of 40 GB for the derivation graph and a time limit of 2 hours for one run of the

inference on Bayesian networks. Exceeding one of these limits will be labeled as failed and be

terminated.

Instance analyses. We summarize statistics of our two instance analyses in Table 4. (1) The

first is a datarace analysis [Naik et al. 2006] that finds all possible statement pairs which may

operate on the same heap object simultaneously with at least one write operation. It includes a

parametric flow-insensitive and context-sensitive :-object-sensitive pointer analysis [Milanova

et al. 2005]. The abstraction points are the allocation sites in the :-object-sensitive analysis, and

the abstraction level (i.e., the : value) for each allocation site is in {0, 1, 2, 3}. The abstraction levels

indicate the degree of context-sensitivity and the site is handled in a context-insensitive way when

the corresponding level is 0. (2) To demonstrate the generality of BinGraph, we also consider a

thread-escape analysis [Naik et al. 2012] that finds all possible statements whose operation target

may be accessed by multiple threads. The analysis is flow- and context-insensitive. The analysis

is parameterized by how the heap objects are modeled. The abstraction points are also allocation

sites and the abstraction level for each allocation site is in {0, 1}. All objects in allocation sites of

level 0 will be considered as one object together during analysis. For an allocation site of level 1, a

standalone abstract object is created and all objects created at the site will be considered as it.

Benchmarks. We evaluated BinGraph on 13 benchmarks shown in Table 5, including programs

from the DaCapo suite [Blackburn et al. 2006] and from past works. For each benchmark, we

previously check each alarm whether it is true and simulate the whole interaction automatically to

calculate relevant metrics. For the datarace analysis, we obtain true alarms by manual inspection

[Raghothaman et al. 2018]. For the thread-escape analysis, we use the result of a CEGAR-based

flow- and context-sensitive analysis [Zhang et al. 2013] as true alarms.4 Four programs are excluded

from the datarace evaluation since the analysis generates no alarms for these programs. Another

four programs are excluded from the thread-escape analysis evaluation because the oracle analysis

fails to terminate on them.

4Since manual inspection of real bugs requires a lot of manual effort, it is common practice in program analysis studies

[Jeon et al. 2020; Li et al. 2018a; Mangal et al. 2015; Zhang et al. 2017] to use an accurate but heavy analysis to obtain ground

truth for interaction or comparison. In addition to this, our approach can be viewed as a lightweight but effective way to

approximate an accurate but heavy analysis [Zhang et al. 2013].
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Table 5. Benchmark characteristics. “Total” and “App” are numbers with and without the JDK using 0-CFA
call graph construction. “DA” and “TEA” are the datarace analysis and the thread-escape analysis. “-” denotes
the benchmark is not used in the analysis.

Program Description
# Classes # Methods Bytecode (KB) Source (KLOC) # True alarms

App Total App Total App Total App Total DA TEA

ftp Apache FTP server 119 1,196 608 7,650 35 443 17 305 75 643
javasrc-p Java source code to HTML translator 51 1,009 471 6,624 42 403 12 276 - 695
jspider Web spider engine 113 1,193 426 7,431 17 429 6.7 298 9 430
hedc Web crawler from ETH 44 1,157 230 7,501 15 464 6 292 12 287
montecarlo Financial simulator 18 974 115 6,260 5 365 3.5 266 - 54
pool Apache Commons Pool 27 1,132 194 7,313 7.5 417 5.3 302 - 312
raytracer 3D raytracer 18 105 74 391 4.9 23 1.8 55 3 233
toba-s Java bytecode to C compiler 25 985 154 6,338 31 393 6.2 270 - 998
weblech Website download/mirror tool 56 1,276 303 8,421 18 503 10 322 6 276
avrora AVR microcontroller simulator 1,119 2,080 3,875 10,095 191 553 54 318 29 -
luindex Document indexing tool 169 1,164 1,030 7,461 72 453 30 299 2 -
sunflow Photo-realistic image rendering system 127 1,853 967 12,901 87 878 15 529 171 -
xalan XML to HTML transforming tool 390 1,723 3,007 12,181 159 786 119 495 75 -

Table 6. The type of properties used in the experiments.

Number Type Number Type

1 The count of reachable vertices 7 The count of vertices with shortest distance ≤ 6

2 Average of shortest distance to reachable vertices 8 The count of vertices with shortest distance ≤ 7

3 The count of vertices with shortest distance ≤ 2 9 The count of vertices with shortest distance ≤ 8

4 The count of vertices with shortest distance ≤ 3 10 The count of vertices with shortest distance ≤ 9

5 The count of vertices with shortest distance ≤ 4 11 The count of vertices with shortest distance ≤ 10

6 The count of vertices with shortest distance ≤ 5

Baseline abstractions. We compare abstractions produced by BinGraph to three baseline ab-

stractions, Base-C, Base-P and Base-R. Base-C corresponds to the coarsest abstraction S0. Base-P

corresponds to the most precise abstraction where (P (G) = AL for G ∈ AS. Base-R corresponds to

the random abstraction (R (G) where abstraction levels are uniformly distributed in {0, 1, . . . ,AL}.

For Base-R, we show the average measurement across 3 runs. We compare BinGraph to these

baselines to demonstrate that the direction in which BinGraphmakes an abstraction more precise is

beneficial to the generalization ability, being neither too coarse nor too fine, and not degenerating to

a random selection. We will evaluate abstractions with a good balance between precision/scalability

in conventional program analysis in Section 5.6.

Features.We present the type (i.e., the meaning of V8 (�, E)) of properties used in the experiments

in Table 6. We introduce the intuition behind choosing these property types in Section 2.3. We

recommend using BinGraph with the properties used in the experiments since they show good

optimization results. To avoid dividing by 0, all properties will be added by 1 during calculating

feature values.

Metrics. The main metric is the inversion count introduced in Section 3.3, which reflects the user

experience during the overall interaction and further reflects the generalization ability of a Bayesian

program analysis. We also demonstrate two metrics used in previous research [Raghothaman et al.

2018] for supplement: Rank-100%-T represents the rounds for inspecting all true alarms by the user.

Rank-90%-T represents that for inspecting 90% true alarms (rounding up) by the user.

Learning configuration. We divide benchmarks into training/validation/test sets. The validation

set is used to determine the hyper-parameter \ introduced in Section 4.2. For the datarace analysis,
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Table 7. Summary of metrics for effectiveness of BinGraph. “Average” represents the average reduction ratio
compared to baselines.

Program
Inversion Rank-100%-T Rank-90%-T

BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R

D
at
ar
ac
e

an
al
y
si
s

avrora 6,249 3,852 6,944 7,341 761 938 717 744 364 421 392 415
ftp 388 1,173 432 540 84 169 83 86 77 112 75 77
sunflow 10,055 17,790 failed 14,443 359 460 failed 961 254 429 failed 315
raytracer 19 87 18 37 10 32 9 15 10 32 9 15
luindex 22 32 646 236 13 18 325 120 13 18 325 120
xalan failed 14,868 failed failed failed 326 failed failed failed 319 failed failed

Average 31.52%↓ 27.81%↓ 42.55%↓ 37.53%↓ 19.39%↓ 37.04%↓ 36.42%↓ 22.34%↓ 30.83%↓

T
h
re
ad
-e
sc
ap
e

an
al
y
si
s

hedc 5,991 14,381 7,045 10,065 372 396 379 393 303 337 316 325
jspider 20,033 36,838 35,517 40,411 635 662 618 629 451 500 527 540
montecarlo 496 1,812 583 1,969 78 163 78 154 59 156 61 122
pool 9,591 20,226 10,450 18,423 371 402 395 411 323 369 361 377
raytracer 6,101 9,756 6,822 8,353 287 314 319 339 263 287 286 281
toba-s 53,419 118,509 76,604 104,175 1,278 1,222 1,278 1,256 960 1,052 1,149 1,103

Average 53.59%↓ 20.42%↓ 48.22%↓ 12.34%↓ 2.53%↓ 12.84%↓ 18.61%↓ 9.47%↓ 18.10%↓

we use {jspider, hedc} for training and {weblech} for validation. For the thread-escape analysis,

we use {ftp, javasrc-p} for training and {weblech} for validation. We choose these benchmarks

as they are among the smaller benchmarks in the size of bytecode since the time cost of using large

programs is unacceptable for training and validation. Other benchmarks are used for test.

5.2 Effectiveness

We present the summary of the metrics for the effectiveness result in Table 7. Compared to the

baselines, BinGraph has significantly fewer inversion counts on most benchmarks. BinGraph

outperforms Base-C on 10 of 12 benchmarks, with an average reduction ratio of 31.52% and 53.59%

for the two analyses respectively. This shows that BinGraph improves generalization ability by

making abstractions more precise. BinGraph outperforms Base-P on 11 of 12 benchmarks, with

an average reduction ratio of 27.81% and 20.42% for the two analyses respectively. This shows

that the abstractions selected by BinGraph are not as precise as Base-P, but have much better

generalization ability. This is because BinGraph only raises the levels of abstraction points that

are beneficial to generalization. A typical example is luindex, in which Base-P has 29× inversion

count compared to BinGraph because the links between false alarms are cut under high precision

abstractions. BinGraph outperforms Base-R on 12 of 12 benchmarks, with an average reduction

ratio of 42.55% and 48.22% for the two analyses. This shows that the strategy learned by BinGraph

is quite different from random selections. Moreover, there are similar improvements in the other

two metrics.

We plot ROC curves [Fawcett 2006] for the datarace analysis in Figure 8 and for the thread-escape

analysis in Figure 9. A point (G,~) represents that the user has inspected G false alarms and ~ true

alarms after (G + ~) rounds of interaction. A relevant metric AUC is the normalized area under the

ROC curve, which is used in previous research [Raghothaman et al. 2018]. The relation between

inversion counts and AUC is Inversion(() = #)#� (1 − AUC), where #) and #� are numbers

of true alarms and false alarms. Since the number of false alarms may differ due to abstractions,

we use inversion counts instead of AUC as the major metric. The larger the AUC is, the lower

the inversion count is. Therefore, AUC can visually show the difference in generalization ability

between different abstractions. Compared to other baselines, BinGraph can be clearly seen to
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Fig. 8. The ROC curves for the datarace analysis. Base-R1 to Base-R3 correspond to 3 runs of Base-R. Results
for failed configurations are not displayed.

have significantly higher AUC. This is a visual illustration of the powerful generalization ability of

abstractions BinGraph selects.

There are two outliers. One is that Base-C has a lower inversion count than other approaches for

benchmark avrora in the datarace analysis experiment, but has higher rank-100%-T and rank-90%-T.

The main reason is that Base-C finds 25 true alarms in only 130 rounds (while BinGraph, Base-P

and Base-R use 363, 391, and 414 rounds, respectively), but takes 808 rounds to find the remaining 4

true alarms. This shows that the performance of Base-C is good at the beginning of the interaction,
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Fig. 9. The ROC curves for the thread-escape analysis. Base-R1 to Base-R3 correspond to 3 runs of Base-R.

but is very bad afterward. For this particular reason, Base-C has a very low inversion count, but

this does not mean that Base-C has a stronger generalization ability. Another exception is that

most valuable abstractions, except the coarsest one 0-CFA, are labeled as failed for benchmark

xalan in the datarace analysis, including 1-object-sensitivity and 2-object-sensitivity (i.e., ( (G) = 1

or 2 respectively holds for G ∈ AS in the abstraction). The main reason is that existing Bayesian

program analysis frameworks are not scalable for large programs using precise abstractions.

In summary, BinGraph is indeed effective at optimizing for the generalization ability of Bayesian

program analysis, and can potentially improve user experience during interaction.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.



Learning Abstraction Selection for Bayesian Program Analysis 128:23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of hyper-parameter

−150%

−100%

−50%

0%

50%

A
ve

ra
ge

 r
ed

uc
ti

on
 r

at
e

Training

Validation

(a) Datarace analysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of hyper-parameter

0%

10%

20%

30%

40%

A
ve

ra
ge

 r
ed

uc
ti

on
 r

at
e

Training

Validation

(b) Thread-escape analysis

Fig. 10. Performance of BinGraph on training and validation sets with different hyper-parameter \ . The
vertical do�ed lines represent the chosen \ .

Table 8. Summary of metrics for the leave-one-out cross-validation in the thread-escape analysis. Statistics
are average reduction compared to Base-R.

Setting Inversion Rank-100%-T Rank-90%-T

BinGraph 48.22%↓ 12.84%↓ 18.10%↓

BinGraphC 40.76%↓ 11.34%↓ 15.69%↓

5.3 Sensitivity Study

We evaluate the sensitivity of BinGraph to hyper-parameter and training benchmarks.

Sensitivity to the hyper-parameter.We present the performance of BinGraph on training and

validation sets with different hyper-parameter \ values (see Algorithm 4) in Figure 10. We iterate

\ from 0 to 1 with 0.05 intervals and evaluate the effect of it using the average reduction ratio

of inversion count compared to Base-R. The performance of BinGraph varies with the change

of \ . For example, when \ is close to 1, its performance is significantly better on the training set

than that on the validation set. The main reason is that Algorithm 4 will generate low coverage

cubes when \ is high, which will cause over-fitting. To counter the sensitivity of BinGraph to

hyper-parameter, we choose \ with the highest combined average reduction ratio among training

and validation sets. The chosen \ values are 0.35 and 0.45 for the thread-escape analysis and the

datarace analysis, respectively.

Sensitivity to training benchmarks. In order to measure the sensitivity of BinGraph to training

benchmarks, we conducted leave-one-out cross-validation. Since some benchmarks for the datarace

analysis are too large to be used for training, we only studied the thread-escape analysis with all 9

benchmarks. Let BinGraphC be the setting of cross-validation, we present the summary of metrics

in Table 8. It can be shown that BinGraph and BinGraphC have a similar improvement over

Base-R, with the differences only being 7.46%, 1.50%, and 2.41% in the three metrics. In summary,

BinGraph is not sensitive to the selection of training benchmarks.

5.4 Necessity to Use Two Derivation Graphs

Note that BinGraph uses two derivation graphs to characterize each abstraction point. However,

the computational cost on the derivation graph after an overall refinement� ′ is significantly higher

than that on the derivation graph before an overall refinement � . To validate the necessity to
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Table 9. Summary of metrics for the ablation experiment. Statistics are average reduction (or increase)
compared to Base-R.

Setting
Datarace analysis Thread-escape analysis

Inversion Rank-100%-T Rank-90%-T Inversion Rank-100%-T Rank-90%-T

BinGraph 42.55%↓ 37.04%↓ 30.83%↓ 48.22%↓ 12.84%↓ 18.10%↓

BinGraphA 2.54%↓ 1.49%↓ 4.48%↑ 28.45%↑ 13.40%↑ 10.00%↑

Table 10. Summary of metrics for the Bayesian inference cost of BinGraph in the datarace analysis. Tuples
and relevant ground clauses are counted from the derivation graph a�er reduction. Iteration times are average
values during the interaction.

Program
# Tuples # Relevant ground clauses Iteration time (s)

BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R

avrora 44,613 84,507 59,061 47,971 33,467 85,585 48,285 36,899 97 612 189 114
ftp 65,931 115,621 19,269 27,905 63,940 116,628 13,593 21,474 309 680 25 86
sunflow 84,561 390,638 failed 76,065 73,711 420,254 failed 62,069 456 3,044 failed 415
raytracer 7,121 4,750 6,886 6,383 5,480 3,175 5,342 4,756 5.9 4.0 6.9 6.3
luindex 36,941 53,154 32,167 43,992 24,261 42,210 20,625 32,118 22 198 27 134

calculate � ′, we conduct an ablation experiment that only uses � to characterize each abstraction

point. Formally, we redefine the feature value in Section 4.1 as _8 ((, G) = V8 (Graph((),AI(G, ( (G)) .

For instance, the feature value of H1 in Table 3 will become (35, 4.114, 18). Other settings remain

unchanged, including the training set, validation set, and the criteria to choose hyper-parameter

\ . Let BinGraphA be the setting of the ablation experiment, we present the summary of metrics

in Table 9. It can be shown that the variation of BinGraphA compared to Base-R is completely

different from BinGraph, and even worse than Base-R in most metrics. The main reason is that

� only characterizes each abstraction point based on the information in the current abstraction

but not that after potential refinements, which leads to the learned strategy being not beneficial in

finding the suitable abstraction. Overall, using � ′ is necessary and valuable.

5.5 Scalability

We evaluate the scalability of the two parts of BinGraph separately. In the offline part, we evaluate

the training cost of BinGraph. In the online part, we evaluate the running cost of the Bayesian

program analysis under the abstraction selected by BinGraph. Since the running cost of the Datalog

engine is negligible for the overall running process (less than 1%), we only present the evaluation

of Bayesian inference.

Training cost. To speed up the training process, we implemented parallelism in (1) Simulated

Annealing for labeling, and (2) validation for obtaining the hyper-parameter. For the datarace

analysis, the labeling process took 4 days and the learning process (including validation) took 1 day.

For the thread-escape analysis, the labeling process took 2 days and the learning process (including

validation) took 8 hours. In total, the training cost of BinGraph is acceptable.

Bayesian inference cost. The computational cost of Bayesian inference depends mainly on the

size of the derivation graph after reduction. Since the average iteration times for the thread-escape

analysis are negligible (less than 1 second), we do not present them. We present the summary

of metrics for the scalability of the datarace analysis in Table 10. It is counter-intuitive that the

most precise abstraction Base-P has a smaller derivation graph than other abstractions in some

benchmarks such as ftp. However, the derivation graph before the reduction of Base-P is the
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Table 11. Summary ofmetrics for the experiments on conventional approaches. Statistics are average reduction
(or increase) compared to Base-R.

Setting
Datarace analysis Thread-escape analysis

Inversion Rank-100%-T Rank-90%-T Inversion Rank-100%-T Rank-90%-T

BinGraph 42.55%↓ 37.04%↓ 30.83%↓ 48.22%↓ 12.84%↓ 18.10%↓

BinGraphM 267.16%↑ 27.42%↑ 31.55%↑ 40.49%↓ 16.99%↓ 17.72%↓

Minimal - - - 27.29%↓ 15.12%↓ 13.00%↓

biggest one. The main reason is that the algorithm to remove cycles is heuristic, and its effect

depends on the structure of the graph. The conclusion is that, under the existing framework of

Bayesian program analysis, the scalability of BinGraph is acceptable compared to other approaches.

5.6 Ineffectiveness of Conventional Approaches

Conventional approaches aim to find abstractions with a good balance between precision and

scalability. Are these abstractions also good for generalization and can we use a conventional

approach to replace our approach? To answer these questions, we first conducted a controlled

variable experiment where we modify BinGraph such that it learns such abstractions. Given a

training program, we apply BinGraph to learn an abstraction that is the cheapest abstraction

among all the abstractions producing the least alarms. We refer to these abstractions as minimal

abstractions and find them using a systematic search LearnMinimalAbstraction [Jeon et al. 2020].

Further, since our approach is not originally designed for learning these abstractions, to remove

the noise incurred by learning, we apply the systematic search to identify minimal abstractions

on the test programs and evaluate their generalization effect. We only study the results of the

thread-escape analysis because the systematic search does not scale for the datarace analysis

when using the test programs. Table 11 shows how much these abstractions identified under the

two settings improve over the cheapest abstraction when applied to a Bayesian program analysis.

BinGraphM andMinimal denote the results under the two setting respectively.

The result shows that BinGraphM has a similarly good performance compared to our approach

on the thread-escape analysis, but has extremely bad performance on the datarace analysis. The

reason is that for the thread-escape dataset, some of the abstractions that balance precision and

scalability happen to be abstractions with good generalization ability. But this is not the case for the

datarace analysis. Moreover, the performance of Minimal is significantly worse than BinGraph and

BinGraphM. This shows that the minimal abstractions on the test programs for the thread-escape

analysis are actually worse in terms of generalization. As a result, conventional approaches cannot

reliably find abstractions with good generalization ability for Bayesian program analyses.

6 RELATED WORK

Our approach is related to research on Bayesian program analysis and data-driven abstraction

selection techniques for conventional analysis. We summarize the related prior works below.

Bayesian program analysis. Bayesian program analysis tools build probabilistic models based on

logical rules, generalize various posterior information, and calculate the probability for each alarm

to be true. Eugene [Mangal et al. 2015] and Bingo [Raghothaman et al. 2018] use user feedback as

posterior information. Drake [Heo et al. 2019b] uses information from programs of old versions

and DynaBoost [Chen et al. 2021] uses dynamic analysis results. Since using different abstractions

is equivalent to using different logical rules and does not cause incompatibility in subsequent

procedures (such as building probabilistic models and generalizing posterior information), our
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approach can be directly combined with these tools. BayeSmith [Kim et al. 2022] learns new

derivation rules and probabilities from existing rules using syntactic information. For an existing

rule '1 : A(G) :- B(G), BayeSmith may refine it to two rules '11 : A(G) :- B(G), Loop(G) and
'12 : A(G) :- B(G),¬Loop(G) with different probabilities. For each ground clause of '1, it will be

replaced by one of '11 or one of '12. The only difference in the generated Bayesian network is

new input tuples Loop(G),¬Loop(G), and new probabilities of the ground clauses. Since input

tuples have probabilities of 1, they do not affect Bayesian inference. Therefore, BayeSmith does

not substantially change the structure of Bayesian networks, and it can be equated to an approach

to learning probabilities of ground clauses. Instead, our approach changes the structure of Bayesian

networks rather than probabilities of ground clauses, so that our approach and BayeSmith are

actually complementary to each other.

Data-driven abstraction selection for conventional analysis. The abstraction selection problem for

conventional program analysis has been extensively studied [Bielik et al. 2017; Grigore and Yang

2016; He et al. 2020; Heo et al. 2016, 2019a, 2017; Jeon et al. 2019, 2018, 2020; Jeon and Oh 2022;

Jeong et al. 2017; Liang et al. 2011; Oh et al. 2015; Peleg et al. 2016; Singh et al. 2018; Wei and Ryder

2015]. Although these approaches are not effective in optimizing for generalization, some of the

ideas are worth learning from. Our approach adapts some of them [Jeon et al. 2019, 2018, 2020; Jeon

and Oh 2022; Jeong et al. 2017; Oh et al. 2015], which use features to express the characteristics

of each abstraction point independently. In these approaches, the chosen features are related to

the program itself (such as whether a method has an allocation site or not), or the analysis itself

(such as the degree of a vertex in the object allocation graph [Li et al. 2018b; Tan et al. 2016]).

For generality and effectiveness in the context of Bayesian program analysis, our approach uses

properties based on differences in the derivation graphs before and after an overall refinement.

7 CONCLUSION

We present BinGraph, a general framework for learning abstraction selection for Bayesian program

analysis. The main idea of BinGraph is refining the abstraction for several rounds and leveraging

the difference of derivation graphs to characterize each abstraction point. In the experiments with

two instance analyses and 13 Java programs, we demonstrate the effectiveness of BinGraph in

enhancing the generalization ability of Bayesian program analysis.
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