
Learning Abstraction Selection for Bayesian Program Analysis
Yifan Zhang, Yuanfeng Shi, Xin Zhang

Peking University, China

Bayesian Program Analysis

Abstraction Selection

Challenges Learning-Based Approach: BinGraph

Evaluation

Program to
be analyzed

Static
analyzer

Inputs
Outputs

Rules

Probabilistic
models

Posterior
information

Abstraction

Level 2
Level 3
Level 3

Ranked
alarms

Too precise

Prevent posterior information
from propagating to relevant
analysis results effectively:

Over-fitting

Goal: optimization for generalization ability

Too coarse

Cause posterior information
to propagate to irrelevant

analysis results falsely:
Under-fitting

(1) Effectiveness: conventional
approaches are ineffective.

� �� ��� ���
	����������
����
�
������������

�

���

���

���

	
��

��
��

��
���

��
�

�

��

��
��

��
��

��

���
�
��
�
���	
�
����
�
�����
�
�����
�
�����

� ��� ���
	����������
����
�
������������

�

���

���

���

���

	
��

��
��

��
���

��
�

�

��

��
��

��
��

��

���
�
��
�
���	
�
����
�
�����
�
�����
�
�����

� ��� ����
���	����
�
�����������������
���

�

��

���

���

�
��

	�
��
�

���
��
��
��
��
��
��
��
�

��
�

���
����
���
�	
���
���
���
���
���
���

� �� �� 	�

���������������������������
���

�

��

��

��

��

��
��

��
���

��
��

��
��

��
��

��
�

��
�

���
�
��
�
���	
�
����
�
�����
�
�����
�
�����

128:20 Yifan Zhang, Yuanfeng Shi, and Xin Zhang

Table 7. Summary of metrics for effectiveness of BinGraph. “Average” represents the average reduction ratio
compared to baselines.

Program
Inversion Rank-100%-T Rank-90%-T

BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R BinGraph Base-C Base-P Base-R

D
at
ar
ac
e

an
al
y
si
s

avrora 6,249 3,852 6,944 7,341 761 938 717 744 364 421 392 415
ftp 388 1,173 432 540 84 169 83 86 77 112 75 77
sunflow 10,055 17,790 failed 14,443 359 460 failed 961 254 429 failed 315
raytracer 19 87 18 37 10 32 9 15 10 32 9 15
luindex 22 32 646 236 13 18 325 120 13 18 325 120
xalan failed 14,868 failed failed failed 326 failed failed failed 319 failed failed

Average 31.52%↓ 27.81%↓ 42.55%↓ 37.53%↓ 19.39%↓ 37.04%↓ 36.42%↓ 22.34%↓ 30.83%↓

T
h
re
ad
-e
sc
ap
e

an
al
y
si
s

hedc 5,991 14,381 7,045 10,065 372 396 379 393 303 337 316 325
jspider 20,033 36,838 35,517 40,411 635 662 618 629 451 500 527 540
montecarlo 496 1,812 583 1,969 78 163 78 154 59 156 61 122
pool 9,591 20,226 10,450 18,423 371 402 395 411 323 369 361 377
raytracer 6,101 9,756 6,822 8,353 287 314 319 339 263 287 286 281
toba-s 53,419 118,509 76,604 104,175 1,278 1,222 1,278 1,256 960 1,052 1,149 1,103

Average 53.59%↓ 20.42%↓ 48.22%↓ 12.34%↓ 2.53%↓ 12.84%↓ 18.61%↓ 9.47%↓ 18.10%↓

we use {jspider, hedc} for training and {weblech} for validation. For the thread-escape analysis,
we use {ftp, javasrc-p} for training and {weblech} for validation. We choose these benchmarks
as they are among the smaller benchmarks in the size of bytecode since the time cost of using large
programs is unacceptable for training and validation. Other benchmarks are used for test.

5.2 Effectiveness

We present the summary of the metrics for the effectiveness result in Table 7. Compared to the
baselines, BinGraph has significantly fewer inversion counts on most benchmarks. BinGraph
outperforms Base-C on 10 of 12 benchmarks, with an average reduction ratio of 31.52% and 53.59%
for the two analyses respectively. This shows that BinGraph improves generalization ability by
making abstractions more precise. BinGraph outperforms Base-P on 11 of 12 benchmarks, with
an average reduction ratio of 27.81% and 20.42% for the two analyses respectively. This shows
that the abstractions selected by BinGraph are not as precise as Base-P, but have much better
generalization ability. This is because BinGraph only raises the levels of abstraction points that
are beneficial to generalization. A typical example is luindex, in which Base-P has 29× inversion
count compared to BinGraph because the links between false alarms are cut under high precision
abstractions. BinGraph outperforms Base-R on 12 of 12 benchmarks, with an average reduction
ratio of 42.55% and 48.22% for the two analyses. This shows that the strategy learned by BinGraph

is quite different from random selections. Moreover, there are similar improvements in the other
two metrics.

We plot ROC curves [Fawcett 2006] for the datarace analysis in Figure 8 and for the thread-escape
analysis in Figure 9. A point (𝑥,𝑦) represents that the user has inspected 𝑥 false alarms and 𝑦 true
alarms after (𝑥 + 𝑦) rounds of interaction. A relevant metric AUC is the normalized area under the
ROC curve, which is used in previous research [Raghothaman et al. 2018]. The relation between
inversion counts and AUC is Inversion(𝑆) = 𝑁𝑇𝑁𝐹 (1 − AUC), where 𝑁𝑇 and 𝑁𝐹 are numbers
of true alarms and false alarms. Since the number of false alarms may differ due to abstractions,
we use inversion counts instead of AUC as the major metric. The larger the AUC is, the lower
the inversion count is. Therefore, AUC can visually show the difference in generalization ability
between different abstractions. Compared to other baselines, BinGraph can be clearly seen to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 128. Publication date: April 2024.

Finer abstraction

Better generalization ability

Pointer Datarace Taint

Better generalization ability than all baselines

(2) Generality: Our method should
work well for a wide range of

Bayesian analyses.

Calculation from
two derivations

Graph-based
feature

(1) Effectiveness (2) Generality

Learned
strategy

Abstraction 1
 [0, 0, 0, 0, 0]

Abstraction 2
 [0, 1, 0, 1, 0]

Final abstraction
 [0, 2, 3, 3, 0]

Refining

